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Preface

‘The philosophers hitherto have only interpreted the world in various
ways: the thing is, however, to change it.’
Karl Marx (1848)

This monograph is based upon a graduate course given at The Fields Institute
for Research in Mathematical Sciences during the Autumn Term 1993. The ob-
jective of the course was to introduce an audience of advanced graduate students,
Post-Doctoral Fellows and others familiar with basic algebraic number theory to
some of the topics studied under the collective rubric of Galois Module Structure.
As part of The Fields Institute’s programme on L-functions the scope of the course
was intended to familiarise the audience with the material sufficiently enough for
them to be able to participate in the Galois Module Structure workshop which was
held at The Fields Institute during February 14-18,1994. Accordingly I centred the
material around one of the Chinburg conjectures because these conjectures are cur-
rently still open but are supported by a body of partial results interesting enough
to illustrate a number of the subject’s techniques in action.

The course was one of four given in connection with the L-functions programme
and during the lectures I was able to benefit from and refer to the parallel lecture
series for background. However, with future generations of graduate students in
mind, I have tried to make the book self-contained in such a way as to be suitable
for use as the basis for a graduate course. For this reason I have not necessarily
battled through all the technicalities of the main results but instead have given
proofs in special cases designed to illuminate rather than intimidate. For example,
I have given a new proof of M.J. Taylor’s theorem—the solution of the Frohlich
conjecture—but have restricted myself to the case of a group of odd prime power
order. Similarly, in the case of D. Holland’s theorem—the solution of the second
Chinburg conjecture modulo D(Z[G])—I have confined myself to the locally cyclic
case with a brief indication of how to promote this special case to give the general
proof.

With subsequent graduate courses in mind I have tried to include some ‘inter-
esting’ exercises at the end of each chapter.

Now let me describe the contents in more detail.

Chapter One consists of basic material. Section 1.1 introduces the cohomol-
ogy of finite groups, Tate cohomology and Galois cohomology. Section 1.2 in-
troduces local fields and gives a quick, simple cohomological proof, which none
of my audience seemed to have encountered previously, of the fundamental reci-
procity isomorphism (Theorem 1.2.2) of local class field theory. This proof is based
upon an exercise to be found in Serre [1979], p.202. Section 1.3 contains the el-
ementary background on the complex representation theory of finite groups. The
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vi Preface

main new techniques which permeate the later chapters are all derived from the
Explicit Brauer Induction homomorphism, a¢, which is described in this section.
This is a natural, canonical form for Brauer’s Induction Theorem, which originated
in Snaith [1988] and Snaith [1989a] and was developed, modified and improved
in Boltje [1990], Boltje [1989], Boltje, Snaith and Symonds [1992], Snaith [1989b],
Snaith [1994] and Symonds [1991]. The important properties of ag are collected,
without proof, in Section 1.3. In Section 1.4 we recall the analytic prerequisites,
namely Artin L-functions, Artin conductors, Artin root numbers, local Gauss sums,
local root numbers and p-adic L-functions. In preparation for the intervention of
these analytic invariants in the Hom-description class-groups, their behaviour un-
der the Galois action of {2q is described. These calculations are facilitated by the
use of the canonical form, ag, for Brauer’s Induction Theorem.

Chapter Two deals with the class-group, CL(O[G]), of an integral group-ring.
In Section 2.1 we recall the Hom-description of the class-group of a group-ring. This
describes the class-group in terms of a quotient of the idelic-valued functions on
the complex representation ring of G, R(G). In Section 2.1 the Hom-description of
the class-group of a maximal order of Q[G] is also described, in readiness for use in
Chapter Five. The kernel of the homomorphism from CL(Z[G]) to the class-group of
a maximal order is denoted by D(Z[G]), whose Hom-description is also given in Sec-
tion 2.1. These Hom-descriptions allow us to interpret analytic invariants defined
on R(G) as elements of CL(Z[G]) in the case when G is a Galois group. For example,
if L/K is a Galois extension of number fields then the Artin root numbers of sym-
plectic representations of the Galois group, G(L/K), give rise to an analytic class,
Wik € CL(Z[G(L/K)]), which is defined in Section 2.2.1. On the other hand, in
Section 2.2.3, using the fundamental classes of local class field theory of (1.2.3), we
define the second Chinburg invariant, Q(L/K,2) € CL(Z[G(L/K)]). When L/K
is tamely ramified Q(L/K,2) is equal to the class of the ring of integers, Or. The
Frohlich-Chinburg conjecture (Conjecture 2.2.6) asserts that Q(L/K,2) = Wy k.
In Section 2.3, using p-adic L-functions, the Hom-description representative is com-
puted for Q(Q* (£,:+1)/Q,2) when p is an odd, regular prime and Q7 ({,s+1)/Q is
the totally real, p-primary cyclotomic extension. As a consequence, in Theorem
2.3.12, we verify the Frohlich-Chinburg conjecture for the intermediate extension,
Fs11/Q, of degree p°.

In Chapter Three we develop logarithmic techniques for detecting elements of
CL(Z[G]). In Section 3.1 we use Explicit Brauer Induction to derive some determi-
nantal congruences. These are congruences satisfied by functions on R(G) which
are given by determinants of units in local group-rings. The first application of
these congruences is to give a simple construction of the group-ring logarithm, L,
of R. Oliver and M.J. Taylor. The role of Lg is to transform the complicated
multiplicative functions which appear in the Hom-description into simpler additive
functions. As an application, in Section 3.2, we establish the tame Galois descent
for determinantal functions (Theorem 3.2.5) which is one of the principal ingredi-
ents in M.J. Taylor’s proof of Frohlich’s conjecture (see Theorem 4.1.5). Another
consequence of the determinantal congruences of Section 3.1 is that the logarithm
of a determinantal function also satisfies a number of congruences. In Section 3.3,
at odd primes, we prove the converse (Theorem 3.3.21)—namely that almost any
function satisfying the congruences is the logarithm of a determinant. Since de-
terminantal functions are trivial in the class-group, this gives a criterion for the
vanishing of classes in D(Z[G]) when G is a p-group of odd order (Theorem 3.3.28).
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In Chapter Four we consider the case when L/K is a tamely ramified Galois
extension of number fields. In this case Q(L/K, 2) = [OL], the class of the integers of
L. In this case Frohlich conjectured that [Or] = Wi,/ k. In Section 4.1 we describe
Frohlich’s Hom-description representative for [O1] and sketch M.J. Taylor’s proof of
Frohlich’s conjecture, culminating (Theorem 4.1.5) in the use of tame Galois descent
for determinantal functions. In Section 4.2 we develop a new approach, using the
congruence results of Theorem 3.3.28 to prove (Theorem 4.2.8) M.J. Taylor’s result
in the special case of a p-group of odd order.

In Chapter Five we consider the class-group of a maximal order of the rational
group-ring. In Section 5.1 we describe a family of Hom-groups associated to cyclic
subquotients of G and the manner in which Explicit Brauer Induction may be
used to construct a split injection of the class-group of the maximal order into
the inverse limit of this family (Theorem 5.1.9). In Section 5.2 the method of
canonical factorisations is explained. This is a method by which to obtain Hom-
description representatives of classes in the class-group of the maximal order. In
Section 5.3 canonical factorisation is used to give a proof of D. Holland’s result that
the Frohlich-Chinburg conjecture holds in the class-group of the maximal order. We
give a fairly complete proof of this result (Theorem 5.3.9) in the case when all the
wild decomposition groups are cyclic (the locally cyclic case). This special case
adequately illustrates how canonical factorisations are manipulated and may be
amplified into a proof of the general case (see Snaith [1994], Section 7.3) using the
results of Section 5.1.

In Chapter Six we give an alternative method of some quaternionic cases of the
Frohlich-Chinburg conjecture which were first studied by S. Kim. These examples
concern Galois extensions, N/Q, whose group is isomorphic to the quaternion group
of order eight which is also the decomposition group at p = 2. In Section 6.1 we
examine the fundamental 2-adic local 2-extension and obtain an injective chain
map of the standard Qg-resolution into it. It is in this first step that our method
departs from that of Kim [1992]. In Section 6.2 we use cohomological techniques
to evaluate the (cohomologically trivial) cokernel of the injection of Section 6.1. In
Section 6.3 we complete the computation by evaluating Q(N/Q,2) in comparison
to WN/Q'

In Chapter Seven we construct some new class-group invariants of the Chinburg
type. These are made from a cohomological study of the higher algebraic K-groups
of rings of S-integers. At the moment I have very little information concerning
these new classes but, as is explained in Remark 7.1.5, these new classes and their
Hom-description representatives should be part of a class-group reflection of the
Lichtenbaum and Stark conjectures.

In conclusion I should like to thank Carolyn, Nina and Daniel—for tolerating
my nocturnal typing—and my students, Jeff Hooper and Minh Tran—for scrutin-
ising the example in Chapter Six—and The Fields Institute—for offering me the
opportunity to give these lectures.

Victor Snaith,
McMaster University,
April 1994.
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Galois Module Structure
Victor P. Snaith

Galois module structure deals with the construction of algebraic
invariants from a Galois extension of number fields with group G.
Typically these invariants lie in the class-group of some group-ring of G
or of a related order. These class-groups have “Hom-descriptions” in
terms of ideélic-valued functions on the complex representations of G.
Following a theme pioneered by A. Frolich, T. Chinburg constructed
several invariants whose Hom-descriptions are (conjecturally) given in
terms of Artin root numbers. For a tame extension, the second Chinburg
invariant is given by the ring of integers, and M. J. Taylor proved the
conjecture in this case. The first published graduate course on the
Chinburg conjectures, this book provides the necessary background in
algebraic and analytic number theory, cohomology, representation theory,
and Hom-descriptions. The computation of Hom-descriptions is facilitated
by Snaith’s Explicit Brauer Induction technique in representation theory.
In this way, illustrative special cases of the main results and new examples
of the conjectures are proved and amplified by numerous exercises and
research problems. The final chapter introduces anew invariant constructed
from algebraic K-theory, whose Hom-description is related to the L-
function value at s = —1.
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