CRM
 MONOGRAPH SERIES

Centre de Recherches Mathématiques Montréal

Combinatorics on Words

Christoffel Words and Repetitions in Words

Jean Berstel
Aaron Lauve
Christophe Reutenauer
Franco V. Saliola

Combinatorics on Words

Christoffel Words and Repetitions in Words

Volume 27

CRM MONOGRAPH SERIES

Centre de Recherches Mathématiques Montréal

Combinatorics on Words

Christoffel Words and Repetitions in Words

Jean Berstel
Aaron Lauve
Christophe Reutenauer
Franco V. Saliola

The Centre de Recherches Mathématiques (CRM) of the Université de Montréal was created in 1968 to promote research in pure and applied mathematics and related disciplines. Among its activities are special theme years, summer schools, workshops, postdoctoral programs, and publishing. The CRM is supported by the Universite de Montréal, the Province of Québec (FQRNT), and the Natural Sciences and Engineering Research Council of Canada. It is affiliated with the Institut des Sciences Mathématiques (ISM) of Montréal, whose constituent members are Concordia University, McGill University, the Université de Montréal, the Université du Québec à Montréal, and the École Polytechnique. The CRM may be reached on the Web at www.crm.umontreal.ca.

The production of this volume was supported in part by the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

2000 Mathematics Subject Classification. Primary 68R15; Secondary 37B10, 11J70, 68W40.

For additional information and updates on this book, visit www.ams.org/bookpages/crmm-27

Library of Congress Cataloging-in-Publication Data

Combinatorics on words: Christoffel words and repetitions in words / Jean Berstel ... [et al.]. p. cm. - (CRM monograph series ; v. 27)

Includes bibliographical references and index.
ISBN 978-0-8218-4480-9 (alk. paper)

1. Combinatorial analysis. 2. Word problems (Mathematics) I. Berstel, Jean, 1941-

QA164.C6638 2008
511'.6-dc22
2008036669

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2009 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America.
@ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. This volume was submitted to the American Mathematical Society in camera ready form by the Centre de Recherches Mathématiques.

Visit the AMS home page at http://www.ams.org/
$10987654321 \quad 141312111009$

Ce livre est dédié à la mémoire de Pierre Leroux (1942-2008)

Contents

Preface ix
Notation xi
Part I. Christoffel Words 1
Chapter 1. Christoffel Words 5

1. Geometric definition 5
2. Cayley graph definition 7
Chapter 2. Christoffel Morphisms 9
3. Christoffel morphisms 9
4. Generators 14
Chapter 3. Standard Factorization 17
5. The standard factorization 17
6. The Christoffel tree 20
Chapter 4. Palindromization 23
7. Christoffel words and palindromes 23
8. Palindromic closures 24
9. Palindromic characterization 29
Chapter 5. Primitive Elements in the Free Group F2 33
10. Positive primitive elements of the free group 33
11. Positive primitive characterization 34
Chapter 6. Characterizations 39
12. The Burrows - Wheeler transform 39
13. Balanced ${ }_{1}$ Lyndon words 41
14. Balanced 2 Lyndon words 41
15. Circular words 42
16. Periodic phenomena 44
Chapter 7. Continued Fractions 47
17. Continued fractions 47
18. Continued fractions and Christoffel words 48
19. The Stern-Brocot tree 52
Chapter 8. The Theory of Markoff Numbers 55
20. Minima of binary quadratic forms 55
21. Markoff numbers 56
22. Markoff's condition 58
23. Proof of Markoff's theorem 61
Part II. Repetitions in Words 65
Chapter 1. The Thue-Morse Word 69
24. The Thue-Morse word 69
25. The Thue-Morse morphism 70
26. The Tarry - Escott problem 71
27. Magic squares 74
Chapter 2. Combinatorics of the Thue-Morse Word 77
28. Automatic sequences 77
29. Generating series 79
30. Overlaps 81
31. Complexity 82
32. Formal languages 85
33. The Tower of Hanoi 90
Chapter 3. Square-Free Words 97
34. One example, three constructions 97
35. Square-free morphisms and codes 100
36. A 3-square-free test for square-freeness 102
37. A 2-square-free test for square-freeness 105
Chapter 4. Squares in Words 107
38. Counting squares 107
39. Centered squares 111
40. Prefix arrays 112
41. Crochemore factorization 114
42. Suffix trees 116
Chapter 5. Repetitions and Patterns 125
43. Maximal repetitions 125
44. Repetition thresholds 126
45. Patterns 127
46. Zimin patterns 131
47. Bi-ideal sequences 133
48. Repetitions in Sturmian words 134
Bibliography 135
Index 143

Preface

This book grew out of two series of five two-hour lectures, given by Jean Berstel and Christophe Reutenauer in March 2007. The lectures were delivered during the school on "Combinatorics on Words" organized by Srečko Brlek, Christophe Reutenauer and Bruce Sagan that took part within the theme semester on Recent Advances in Combinatorics on Words at the Centre de recherches mathématiques (CRM), Montréal, Canada.

Notes for the lectures were written down by Aaron Lauve and Franco Saliola. They have augmented their notes with several topics and have added more than 100 exercises. There has been a lot of work in adding bibliographic references and a detailed index.

The text is divided into two parts. Part I, based on the lectures given by Christophe Reutenauer, is a comprehensive and self-contained presentation of the current state of the art in Christoffel words. These are finitary versions of Sturmian sequences. It presents relationships between Christoffel words and topics in discrete geometry, group theory, and number theory. Part I concludes with a new exposition of the theory of Markoff numbers.

Part II, based on the lectures by Jean Berstel, starts with a systematic exposition of the numerous properties, applications, and interpretations of the famous Thue-Morse word. It then presents work related to Thue's construction of a square-free word, followed by a detailed exposition of a linear-time algorithm for finding squares in words. This part concludes with a brief glimpse of several additional problems with origins in the work of Thue.

Acknowledgements. We gratefully acknowledge the generosity of Amy Glen and Gwénaël Richomme, who agreed to read a preliminary version of this text. Implementation of their numerous comments improved the quality of the text tremendously. We also thank Anouk Bergeron-Brlek for lending us a third set of notes and Lise Tourigny through whom all things are possible. Finally, we would like to thank the CRM and François Bergeron, the principal organizer of the CRM theme semester, for providing an excellent scientific program and working environment during the semester as well as support throughout the preparation of this text.

Typesetting. The book was typeset with the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ document preparation system together with the following $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ packages:

algorithm2e	color	multicol	stmaryrd
amsrefs	ednotes	paralist	subfigure
amssymb	gastex	pstricks	upref
array	graphicx	pst-poly	xy
bbm	mathtools	pst-tree	

and Will Robertson's $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ code for typesetting magic squares [Rob2005].

Notation

Abstract

We gather in one place the notational conventions shared by the two parts. The reader may also consult the subject index to locate the major occurrences within the text of most of the symbols and bold words below.

Let \mathbb{N} denote the set of nonnegative integers. If a, b and n are integers, then the notation $a \equiv b \bmod n$ shall mean that $a-b$ is divisible by n. Equivalently, $a \equiv b \bmod n$ if and only if a and b have the same remainder upon division by n.

Let A denote a finite set of symbols. The elements of A are called letters and the set A is called an alphabet. A word over an alphabet A is an element of the free monoid A^{*} generated by A. The identity element ϵ of A^{*} is called the empty word. Given a word $w \in A^{*}$, the square of w is the monoid product $w^{2}=w w$ in A^{*}. Higher powers of w are defined analogously. We frequently take A to be a subset of the nonnegative integers \mathbb{N}. The reader is cautioned to read 101 not as "one hundred and one" but as " $1 \cdot 0 \cdot 1$," an element of $\{0,1\}^{3}$.

If $w \in A^{*}$, then there exists a unique integer $r \geq 0$ and unique letters a_{1}, a_{2}, \ldots, $a_{r} \in A$ such that $w=a_{1} a_{2} \cdots a_{r}$; the number r is called the length of w and denoted by $|w|$. A positive integer p is a period of w if $a_{i}=a_{i+p}$ for all $1 \leq i \leq$ $|w|-p$. (Note that if $p \geq|w|$, then p is a period of w.) If $w \in A^{*}$ and $a \in A$, then $|\boldsymbol{w}|_{\boldsymbol{a}}$ denotes the number of occurrences of the letter a in the word w so that

$$
|w|=\sum_{a \in A}|w|_{a} .
$$

If $w=a_{1} a_{2} \cdots a_{r}$, where $a_{1}, a_{2}, \ldots, a_{r} \in A$, then the reversal of w is the word

$$
\widetilde{w}=a_{r} \cdots a_{2} a_{1} .
$$

We say w is a palindrome if $w=\widetilde{w}$.
An infinite word is a map from \mathbb{N} to A, typically written in bold or as a sequence such as $\boldsymbol{w}=w(0) w(1) w(2) \cdots$ or $\boldsymbol{w}=w_{0} w_{1} w_{2} \cdots$ (we freely pass between the two notations w_{n} and $w(n)$ in what follows). Any finite word m gives rise to a periodic infinite word denoted $\boldsymbol{m}^{\boldsymbol{\infty}}$, namely

$$
m^{\infty}=m m m \cdots .
$$

A factorization of a finite word w over A is a sequence $\left(w_{1}, w_{2}, \ldots, w_{r}\right)$ of words over A such that the relation $w=w_{1} w_{2} \cdots w_{r}$ holds in the monoid A^{*}. We sometimes write $w=\left(w_{1}, w_{2}, \ldots, w_{r}\right)$ to emphasize a particular factorization of w. Factorizations of infinite words are similarly defined (with w_{r} necessarily the only infinite word in the sequence). If w is a finite or infinite word over A and $w=u v$ for some (possibly empty) words u and v, then u is called a prefix of w and v is
a suffix of w. Conversely, a factor of a finite or infinite word w is a finite word v such that $w=u v u^{\prime}$ for some words u, u^{\prime}; we say v is a proper factor if $v \neq \epsilon$ and $u u^{\prime} \neq \epsilon$. Given two words $w, w^{\prime} \in A^{*}$, we say that w is a conjugate of w^{\prime} if there exists $u, v \in A^{*}$ such that $w=u v$ and $w^{\prime}=v u$.

Let w be a finite or infinite word over an alphabet A and write $w=a_{0} a_{1} a_{2} \cdots$, where $a_{0}, a_{1}, a_{2}, \cdots \in A$. If v is is a factor of w, then

$$
v=a_{i} a_{i+1} \cdots a_{j} \quad \text { for some } \quad 0 \leq i<j
$$

and $a_{i} a_{i+1} \cdots a_{j}$ is said to be an occurrence of v in w. (Specifically, an occurrence of v in w also includes information about where it appears in w; for the factor above, we say the starting index is i.) If u and v are words, then u is said to contain v if there is an occurrence of v in u.

Given two alphabets A, B, a morphism from A^{*} to B^{*} shall always mean a "morphism of monoids." That is, a set mapping $f: A^{*} \rightarrow B^{*}$ satisfying

$$
f(u v)=f(u) f(v) \quad \text { for all } u, v \in A^{*}
$$

In particular, $f\left(\epsilon_{A^{*}}\right)=\epsilon_{B^{*}}$ since the empty word ϵ is the only element in a free monoid satisfying $w^{2}=w$. The identity morphism on A^{*} is the morphism sending each $w \in A^{*}$ to itself. The trivial morphism from A^{*} to B^{*} is the morphism sending each $w \in A^{*}$ to $\epsilon_{B^{*}}$.

Bibliography

For the convenience of the reader, each entry below is followed by \uparrow and a list of page numbers indicating the location within the book where the citation occurs.
[ABG2007] A. Aberkane, S. Brlek, and A. Glen, Sequences having the Thue - Morse complexity (2007), preprint. $\uparrow 84$
[AB2005] B. Adamczewski and Y. Bugeaud, On the decimal expansion of algebraic numbers, Fiz. Mat. Fak. Moksl. Semin. Darb. 8 (2005), 5-13. $\uparrow 134$
[AL1977] A. Adler and S.-Y. R. Li, Magic cubes and Prouhet sequences, Amer. Math. Monthly 84 (1977), no. 8, 618-627. $\uparrow 74$
$\left[\mathrm{AAB}^{+} 1995\right]$ J.-P. Allouche, A. Arnold, J. Berstel, S. Brlek, W. Jockusch, S. Plouffe, and B. E. Sagan, A relative of the Thue-Morse sequence, Discrete Math. 139 (1995), no. 1-3, 455-461. $\uparrow 71,95$
[AARS1994] J.-P. Allouche, D. Astoorian, J. Randall, and J. Shallit, Morphisms, squarefree strings, and the Tower of Hanoi puzzle, Amer. Math. Monthly 101 (1994), no. 7, 651-658. $\uparrow 90,95,99$
[AB1992] J.-P. Allouche and R. Bacher, Toeplitz sequences, paperfolding, Towers of Hanoi and progression-free sequences of integers, Enseign. Math. (2) 38 (1992), no. 3-4, 315-327. $\uparrow 95$
[AS1999] J.-P. Allouche and J. Shallit, The ubiquitous Prouhet - Thue - Morse sequence, Sequences and Their Applications (Singapore, 1998) (C. Ding, T. Helleseth, and H. Niederreiter, eds.), Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 1999, pp. 1-16. $\uparrow 69$
[AS2003] , Automatic sequences: Theory, applications, generalizations, Cambridge Univ. Press, Cambridge, 2003. $\uparrow 6,71,78,79,80,81$
[AT2007] A. Alpers and R. Tijdeman, The two-dimensional Prouhet-Tarry - Escott problem, J. Number Theory 123 (2007), no. 2, 403-412. $\uparrow 73$
[Aus2006] P. Auster, The Brooklyn follies, Henry Holt and Co., New York, NY, 2006. $\uparrow 45$
[BEM1979] D. R. Bean, A. Ehrenfeucht, and G. F. McNulty, Avoidable patterns in strings of symbols, Pacific J. Math. 85 (1979), no. 2, 261-294. $\uparrow 102,127$
[Ber1771] J. Bernoulli, Sur une nouvelle espèce de calcul, Recueil pour les astronomes, Vol. 1, Berlin, 1771, pp. 255-284. $\uparrow 3$, 55
[Ber1990] J. Berstel, Tracé de droites, fractions continues et morphismes itérés, Mots, Lang. Raison. Calc., Hermès, Paris, 1990, pp. 298-309. $\uparrow 5$
[Ber1995] _ Axel Thue's papers on repetitions in words: A translation, Publications du LaCIM, vol. 20, UQÀM, Montréal, QC, 1995. $\uparrow 81$
[BdL1997] J. Berstel and A. de Luca, Sturmian words, Lyndon words and trees, Theoret. Comput. Sci. 178 (1997), no. 1-2, $171-203 . \uparrow 20,28,41,47$
[BP1985] J. Berstel and D. Perrin, Theory of codes, Pure Appl. Math., vol. 117, Academic Press, Orlando, FL, 1985. $\uparrow 105$
[BS2006] J. Berstel and A. Savelli, Crochemore factorization of Sturmian and other infinite words, Mathematical Foundations of Computer Science 2006 (Stará Lesná, 2006) (R. Královič and P. Urzyczyn, eds.), Lecture Notes in Comput. Sci., vol. 4162, Springer, Berlin, 2006, pp. 157-166. $\uparrow 116$
[BS1993] J. Berstel and P. Séébold, A characterization of overlap-free morphisms, Discrete Appl. Math. 46 (1993), no. 3, 275-281. $\uparrow 81$
[BdLR2008] V. Berthé, A. de Luca, and C. Reutenauer, On an involution of Christoffel words and Sturmian morphisms, European J. Combin. 29 (2008), no. 2, 535-553. $\uparrow 14$, 15, 25
[BBGL2007] A. Blondin-Massé, S. Brlek, A. Glen, and S. Labbé, On the critical exponent of generalized Thue - Morse words, Discrete Math. Theor. Comput. Sci. 9 (2007), no. 1, 293-304. $\uparrow 126$
[BL1993] J.-P. Borel and F. Laubie, Quelques mots sur la droite projective réelle, J. Théor. Nombres Bordeaux 5 (1993), no. 1, 23-51. $\uparrow 5,17,18,20,25,47$
[BR2006] J.-P. Borel and C. Reutenauer, On Christoffel classes, Theor. Inform. Appl. 40 (2006), no. 1, 15-27. $\uparrow 27,42,44$
[BI1994] P. Borwein and C. Ingalls, The Prouhet - Tarry - Escott problem revisited, Enseign. Math. (2) 40 (1994), no. 1-2, 3-27. $\uparrow 73$
[BLP2003] P. Borwein, P. Lisoněk, and C. Percival, Computational investigations of the Prouhet - Tarry - Escott problem, Math. Comp. 72 (2003), no. 244, 2063-2070. $\uparrow 73$
[Brl1989] S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Appl. Math. 24 (1989), no. 1-3, 83-96. $\uparrow 81,82$
[BW1994] M. Burrows and D. J. Wheeler, A block-sorting lossless data compression algorithm, Technical Report 124, Digital, Palo Alto, CA, 1994. $\uparrow 39$
[Car1921] F. Carlson, Über Potenzreihen mit ganzzahligen Koeffizienten, Math. Z. 9 (1921), no. 1-2, 1-13. $\uparrow 89$
[Car2006] A. Carpi, On the repetition threshold for large alphabets, Mathematical Foundations of Computer Science 2006 (Stará Lesná, 2006) (R. Královič and P. Urzyczyn, eds.), Lecture Notes in Comput. Sci., vol. 4162, Springer, Berlin, 2006, pp. 226-237. $\uparrow 126$
[Car2007] , On Dejean's conjecture over large alphabets, Theoret. Comput. Sci. $\mathbf{3 8 5}$ (2007), no. 1-3, 137-151. $\uparrow 126$
[Cas1957] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 45, Cambridge Univ. Press, New York, NY, 1957. $\uparrow 56$
[CFL1958] K.-T. Chen, R. H. Fox, and R. C. Lyndon, Free differential calculus. IV: The quotient groups of the lower central series, Ann. of Math. (2) 68 (1958), 81-95. $\uparrow 41$
[CS1963] N. Chomsky and M.-P. Schützenberger, The algebraic theory of context-free languages, Computer Programming and Formal Systems, North-Holland, Amsterdam, 1963, pp. 118-161. $\uparrow 89$
[Chr1875] E. B. Christoffel, Observatio arithmetica, Ann. Mat. Pura Appl. (2) 6 (1875), 148 152. $\uparrow 5,7,44$
[Chr1887] , Lehrsätze über arithmetische Eigenschaften der Irrationalzahlen, Ann. Mat. Pura Appl. (2) 15 (1887-1888), 253-276. $\uparrow 5$
[CKMR1980] G. Christol, T. Kamae, M. Mendès France, and G. Rauzy, Suites algébriques, automates et substitutions, Bull. Soc. Math. France 108 (1980), no. 4, 401-419. $\uparrow 80$
[Cob1972] A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164-192. $\uparrow 78$
[Coh1972] H. Cohn, Markoff forms and primitive words, Math. Ann. 196 (1972), 8-22. $\uparrow 11$
[CS1966] M. Coudrain and M.-P. Schützenberger, Une condition de finitude des monoïdes finiment engendrés, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A1149-A1151. $\uparrow 133$
[CH1973] E. M. Coven and G. A. Hedlund, Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138-153. $\uparrow 43,85$
[Cro1981] M. Crochemore, An optimal algorithm for computing the repetitions in a word, Inform. Process. Lett. 12 (1981), no. 5, 244-250. $\uparrow 109$
[Cro1982] , Sharp characterizations of squarefree morphisms, Theoret. Comput. Sci. 18 (1982), no. 2, 221-226. $\uparrow 100,101$
[Cro1983a] , Recherche linéaire d'un carré dans un mot, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 18, 781-784. $\uparrow 114,115$
[Cro1983b] _ , Régularités évitables, Thèse d'État, Université de Rouen, 1983. $\uparrow 100$
[Cro1986] , Transducers and repetitions, Theoret. Comput. Sci. 45 (1986), no. 1, 6386. $\uparrow 122$
[CDP2005] M. Crochemore, J. Désarménien, and D. Perrin, A note on the Burrows - Wheeler transformation, Theoret. Comput. Sci. 332 (2005), no. 1-3, 567-572. $\uparrow 39,40$
[CHL2001] M. Crochemore, C. Hancart, and T. Lecroq, Algorithmique du texte, Vuibert, Paris, 2001; English transl. in Algorithms on strings, Cambridge Univ. Press, Cambridge, 2007. $\uparrow 111$
[CHL2007] , Algorithms on strings, Cambridge Univ. Press, Cambridge, 2007. $\uparrow 111,114$, 116, 119, 123
[CI2007] M. Crochemore and L. Ilie, Analysis of maximal repetitions in strings, Mathematical Foundations of Computer Science 2007 (Ceský Krumlov, 2007) (L. Kucera and A. Kucera, eds.), Lecture Notes in Comput. Sci., vol. 4708, Springer, Berlin, 2007, pp. 465-476. $\uparrow 125,126$
[CR1995] M. Crochemore and W. Rytter, Squares, cubes, and time-space efficient string searching, Algorithmica 13 (1995), no. 5, 405-425. $\uparrow 107,109$
[CR2002] , Jewels of stringology, World Sci. Publ.., River Edge, NJ, 2002. $\uparrow 117,124$
[Cur1993] J. D. Currie, Unsolved problems: Open problems in pattern avoidance, Amer. Math. Monthly 100 (1993), no. 8, 790-793. $\uparrow 131$
[CM2007] J. D. Currie and M. Mohammad-Noori, Dejean's conjecture and Sturmian words, European J. Combin. 28 (2007), no. 3, 876-890. $\uparrow 126$
[CV2007] J. D. Currie and T. I. Visentin, On abelian 2-avoidable binary patterns, Acta Inform. 43 (2007), no. 8, 521-533. $\uparrow 130$
[CF1989] T. W. Cusick and M. E. Flahive, The Markoff and Lagrange spectra, Math. Surveys Monogr., vol. 30, Amer. Math. Soc., Providence, RI, 1989. $\uparrow 56,64$
[Dav1992] H. Davenport, The higher arithmetic: An introduction to the theory of numbers, 6th ed., Cambridge Univ. Press, Cambridge, 1992. $\uparrow 47$
[Dej1972] F. Dejean, Sur un théorème de Thue, J. Combinatorial Theory Ser. A 13 (1972), 90-99. $\uparrow 126$
[Dek1979] F. M. Dekking, Strongly nonrepetitive sequences and progression-free sets, J. Combin. Theory Ser. A 27 (1979), no. 2, 181-185. $\uparrow 128,130$
[Dic1930] L. E. Dickson, Studies in the theory of numbers, Univ. Chicago Press, Chicago, IL, 1930; reprinted as Introduction to the theory of numbers, Dover Publ., New York, NY, 1957. $\uparrow 55,56$
[DB1937] H. L. Dorwart and O. E. Brown, The Tarry - Escott problem, Amer. Math. Monthly 44 (1937), no. 10, 613-626. $\uparrow 71$
[DG1990] S. Dulucq and D. Gouyou-Beauchamps, Sur les facteurs des suites de Sturm, Theoret. Comput. Sci. 71 (1990), no. 3, 381-400. $\uparrow 41$
[Duv1983] J.-P. Duval, Factorizing words over an ordered alphabet, J. Algorithms 4 (1983), no. 4, 363-381. $\uparrow 41$
[Erd1961] P. Erdős, Some unsolved problems, Magyar Tud. Akad. Mat. Kutató Int. Közl. 6 (1961), 221-254. $\uparrow 127$
[Evd1968] A. A. Evdokimov, Strongly asymmetric sequences generated by a finite number of symbols, Dokl. Akad. Nauk SSSR 179 (1968), 1268-1271; English transl., Soviet Math. Dokl. 9 (1968), 536-539. $\uparrow 128$
[FM1997] S. Ferenczi and C. Mauduit, Transcendence of numbers with a low complexity expansion, J. Number Theory 67 (1997), no. 2, 146-161. $\uparrow 134$
[FS1998] A. S. Fraenkel and J. Simpson, How many squares can a string contain?, J. Combin. Theory Ser. A 82 (1998), no. 1, $112-120 . \uparrow 109,110$
[Fro1913] F. G. Frobenius, Über die Markoffschen Zahlen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1913), 458-487; reprinted in J.-P. Serre (ed.), Gesammelte Abhandlungen, Vol. 3, Springer, Berlin, 1968. $\uparrow 56,58$
[Fur1967] H. Furstenberg, Algebraic functions over finite fields, J. Algebra 7 (1967), 271-277. $\uparrow 80$
[Gau1986] C. F. Gauss, Disquisitiones arithmeticae, Springer, New York, NY, 1986. $\uparrow 55$
[GR1993] I. M. Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent set, J. Combin. Theory Ser. A 64 (1993), no. 2, 189-215. $\uparrow 39$
[GLS2008] A. Glen, A. Lauve, and F. V. Saliola, A note on the Markoff condition and central words, Inform. Process. Lett. 105 (2008), no. 6, 241-244. $\uparrow 61,64$
[GV1991] P. Goralčík and T. Vanicek, Binary patterns in binary words, Internat. J. Algebra Comput. 1 (1991), no. 3, 387-391. $\uparrow 105$
[GKP1994] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics: A foundation for computer science, 2nd ed., Addison-Wesley, Reading, MA, 1994. $\uparrow 47,53$
[Gus1997] D. Gusfield, Algorithms on strings, trees, and sequences: Computer science and computational biology, Cambridge Univ. Press, Cambridge, 1997. $\uparrow 117,119,122$
[Hal1964] M. Hall Jr., Generators and relations in groups: The Burnside problem, Lectures on Modern Mathematics, Vol. II, Wiley, New York, NY, 1964, pp. $42-92 . \uparrow 98,99$
[HYY2003] H. K. Hsiao, Y. T. Yeh, and S. S. Yu, Square-free-preserving and primitivepreserving homomorphisms, Acta Math. Hungar. 101 (2003), no. 1-2, 113-130. $\uparrow 101$
[Ili2007] L. Ilie, A note on the number of squares in a word, Theoret. Comput. Sci. 380 (2007), no. 3, 373-376. $\uparrow 110$
[Jac1956] N. Jacobson, Structure of rings, Amer. Math. Soc., Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, RI, 1956. $\uparrow 133$
[JZ2004] O. Jenkinson and L. Q. Zamboni, Characterisations of balanced words via orderings, Theoret. Comput. Sci. 310 (2004), no. 1-3, $247-271$. $\uparrow 43$
[Jus2005] J. Justin, Episturmian morphisms and a Galois theorem on continued fractions, Theor. Inform. Appl. 39 (2005), no. 1, 207 -215. $\uparrow 25,29$
[KR2007] C. Kassel and C. Reutenauer, Sturmian morphisms, the braid group B 4 , Christoffel words and bases of F_{2}, Ann. Mat. Pura Appl. (4) 186 (2007), no. 2, 317-339. $\uparrow 34$
[Ker1986] V. Keränen, On the k-freeness of morphisms on free monoids, Ann. Acad. Sci. Fenn. Math. Diss. (1986), no. 61, 55. $\uparrow 105$
[Ker1987] , On the k-freeness of morphisms on free monoids, STACS 87 (Passau, 1987) (F.-J. Brandenburg, G. Vidal-Naquet, and M. Wirsing, eds.), Lecture Notes in Comput. Sci., vol. 247, Springer, Berlin, 1987, pp. 180-188. $\uparrow 105$
[Ker1992] , Abelian squares are avoidable on 4 letters, Automata, Languages and Programming (Vienna, 1992) (W. Kuich, ed.), Lecture Notes in Comput. Sci., vol. 623, Springer, Berlin, 1992, pp. 41-52. $\uparrow 128$
[KK1999a] R. Kolpakov and G. Kucherov, Finding maximal repetitions in a word in linear time, 40th Annual Symposium on Foundations of Computer Science (New York, NY, 1999), IEEE Computer Soc., Los Alamitos, CA, 1999, pp. 596-604. $\uparrow 125$
[KK1999b] , On maximal repetitions in words, Fundamentals of Computation Theory (Iaşi, 1999) (G. Ciobanu and G. Păun, eds.), Lecture Notes in Comput. Sci., vol. 1684, Springer, Berlin, 1999, pp. 374-385. $\uparrow 125$
[KZ1873] A. Korkine and G. Zolotareff, Sur les formes quadratiques, Math. Ann. 6 (1873), no. 3, $366-389$. $\uparrow 55$
[LS1993] G. M. Landau and J. P. Schmidt, An algorithm for approximate tandem repeats, Combinatorial Pattern Matching (Padova, 1993) (A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, eds.), Lecture Notes in Comput. Sci., vol. 684, Springer, Berlin, 1993, pp. 120-133. $\uparrow 123$
[LV1986] G. M. Landau and U. Vishkin, Introducing efficient parallelism into approximate string matching and a new serial algorithm, Proc. 18th Annual ACM Symposium on Theory of Computing (Berkeley, CA, 1986), ACM Press, New York, NY, 1986, pp. 220-230. $\uparrow 123$
[Lec1985] M. Leconte, A characterization of power-free morphisms, Theoret. Comput. Sci. 38 (1985), no. 1, 117-122. $\uparrow 105$
[Lem1970] A. Lempel, On a homomorphism of the de Bruijn graph and its applications to the design of feedback shift registers, IEEE Trans. Computers C-19 (1970), 1204-1209. $\uparrow 78$
[LZ1976] A. Lempel and J. Ziv, On the complexity of finite sequences, IEEE Trans. Information Theory IT-22 (1976), no. 1, 75-81. $\uparrow 114$
[Lot1997] M. Lothaire, Combinatorics on words, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1997. $\uparrow 41,99,125$
[Lot2002] _ , Algebraic combinatorics on words, Encyclopedia Math. Appl., vol. 90, Cambridge Univ. Press, Cambridge, 2002. $\uparrow 6,9,14,41,43,125,130,131,133$
[Lot2005] , Applied combinatorics on words, Encyclopedia Math. Appl., vol. 105, Cambridge Univ. Press, Cambridge, 2005. $\uparrow 110$
[dL1997] A. de Luca, Sturmian words: Structure, combinatorics, and their arithmetics, Theoret. Comput. Sci. 183 (1997), no. 1, $45-82 . \uparrow 24,25,27$
[dLM1994] A. de Luca and F. Mignosi, Some combinatorial properties of Sturmian words, Theoret. Comput. Sci. 136 (1994), no. 2, 361-385. $\uparrow 11,31,41$
[dLV1989] A. de Luca and S. Varricchio, Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups, Theoret. Comput. Sci. 63 (1989), no. 3, 333-348. 个82
[dLV1999] , Finiteness and regularity in semigroups and formal languages, Monogr. Theoret. Comput. Sci. EATCS Ser., Springer, Berlin, 1999. $\uparrow 133$
[Luc1893] É. Lucas, Récréations mathématiques, Vol. 3, Gauthier-Villars, Paris, 1893; reprinted by A. Blanchard, Paris, 1979. $\uparrow 91$
[LS2001] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Classics Math., Springer, Berlin, 2001. $\uparrow 35$
[MKS2004] W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, 2nd ed., Dover Publ., Mineola, NY, 2004. $\uparrow 35$
[MRS2003] S. Mantaci, A. Restivo, and M. Sciortino, Burrows - Wheeler transform and Sturmian words, Inform. Process. Lett. 86 (2003), no. 5, 241-246. $\uparrow 40$
[Man2001] G. Manzini, An analysis of the Burrows-Wheeler transform, J. ACM 48 (2001), no. $3,407-430$. $\uparrow 39$
[Mar1879] A. Markoff, Sur les formes quadratiques binaires indéfinies, Math. Ann. 15 (1879), no. $3-4,381-406$. $\uparrow 5,55,56,57$
[Mar1880] , Sur les formes quadratiques binaires indéfinies. 2nd mémoire, Math. Ann. 17 (1880), no. 3, 379-399. $\uparrow 5,55,56,57$
[Mar1881] , Sur une question de Jean Bernoulli, Math. Ann. 19 (1881), no. 1, 27-36. $\uparrow 5,55$
[McC1976] E. M. McCreight, A space-economical suffix tree construction algorithm, J. Assoc. Comput. Mach. 23 (1976), no. 2, 262-272. $\uparrow 119$
[Mel1999] G. Melançon, Visualisation de graphes et combinatoire des mots, thèse d'habilitation à diriger les recherches, Université Bordeaux I, 1999. $\uparrow 42$
[Men2003] F. Mendivil, Fractals, graphs, and fields, Amer. Math. Monthly 110 (2003), no. 6, 503-515. $\uparrow 78$
[Mig1991] F. Mignosi, On the number of factors of Sturmian words, Theoret. Comput. Sci. 82 (1991), no. 1, 71-84. $\uparrow 134$
[MP1992] F. Mignosi and G. Pirillo, Repetitions in the Fibonacci infinite word, RAIRO Inform. Théor. Appl. 26 (1992), no. 3, 199-204. $\uparrow 134$
[MS1993] F. Mignosi and P. Séébold, Morphismes sturmiens et règles de Rauzy, J. Théor. Nombres Bordeaux 5 (1993), no. 2, 221-233. $\uparrow 14$
[Mor2004] E. Moreno, On the theorem of Fredricksen and Maiorana about de Bruijn sequences, Adv. in Appl. Math. 33 (2004), no. 2, 413-415. $\uparrow 78$
[MH1940] M. Morse and G. A. Hedlund, Symbolic dynamics. II: Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42. $\uparrow 43,44$
[MH1944] _ Unending chess, symbolic dynamics and a problem in semigroups, Duke Math. J. 11 (1944), 1-7. $\uparrow 97, ~ 98, ~ 99$
[Mou1992] J. Moulin-Ollagnier, Proof of Dejean's conjecture for alphabets with 5, 6, 7, 8, 9, 10 and 11 letters, Theoret. Comput. Sci. 95 (1992), no. 2, 187-205. $\uparrow 126$
[Mye1986] E. W. Myers, An $O(N D)$ difference algorithm and its variations, Algorithmica 1 (1986), no. 1, 251-266. $\uparrow 123$
[NBT1963] H. Noland, C. H. Braunholtz, and T. Tamura, Advanced problems and solutions: Solutions: 5030, Amer. Math. Monthly 70 (1963), no. 6, 675-676. $\uparrow 97$
[OZ1981] R. P. Osborne and H. Zieschang, Primitives in the free group on two generators, Invent. Math. 63 (1981), no. 1, $17-24 . \uparrow 5,34$
[Pan1984] J.-J. Pansiot, A propos d'une conjecture de F. Dejean sur les répétitions dans les mots, Discrete Appl. Math. 7 (1984), no. 3, 297-311. $\uparrow 126$
[Pir1999] G. Pirillo, A new characteristic property of the palindrome prefixes of a standard Sturmian word, Sém. Lothar. Combin. 43 (1999), B43f. $\uparrow 39$
[Ple1970] P. A. B. Pleasants, Non-repetitive sequences, Proc. Cambridge Philos. Soc. 68 (1970), 267-274. $\uparrow 128$
[Pro1851] E. Prouhet, Mémoire sur quelques relations entre les puissances des nombres, C. R. Acad. Sci. Paris Sér. I Math. 33 (1851), 225. $\uparrow 71,72$
[Pyt2002] N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics (V. Berthé, S. Ferenczi, C. Mauduit, and A. Siegel, eds.), Lecture Notes in Math., vol. 1794, Springer, Berlin, 2002. $\uparrow 6$
[Ram2007] N. Rampersad, On the context-freeness of the set of words containing overlaps, Inform. Process. Lett. 102 (2007), no. 2-3, 74-78. $\uparrow 89,90$
[Ran1973] G. N. Raney, On continued fractions and finite automata, Math. Ann. 206 (1973), 265-283. $\uparrow 28$
[Rau1984] G. Rauzy, Des mots en arithmétique, Journées d'Avignon. Théorie des langages et complexité des algorithmes (Avignon, 1983) (B. Rozoy, ed.), Publ. Dép. Math. Nouvelle Sér. B, vol. 84-6, Univ. Claude-Bernard, Lyon, 1984, pp. 103-113. $\uparrow 20$
[Reu2006a] C. Reutenauer, Mots de Lyndon généralisés, Sém. Lothar. Combin. 54 (2006), B54h. $\uparrow 56$
[Reu2006b] , On Markoff's property and Sturmian words, Math. Ann. 336 (2006), no. 1, $1-12 . \uparrow 56,60,61,62,64$
[Ric2003] G. Richomme, Some non-finitely generated monoids of repetition-free endomorphisms, Inform. Process. Lett. 85 (2003), no. 2, 61-66. $\uparrow 100$
[RW2002] G. Richomme and F. Wlazinski, Some results on k-power-free morphisms, Theoret. Comput. Sci. 273 (2002), no. 1-2, 119-142. $\uparrow 100$
[RW2004] , Overlap-free morphisms and finite test-sets, Discrete Appl. Math. 143 (2004), no. 1-3, $92-109 . \uparrow 101$
[RW2007] , Existence of finite test-sets for k-power-freeness of uniform morphisms, Discrete Appl. Math. 155 (2007), no. 15, 2001-2016. $\uparrow 101$
[Rob2005] W. Robertson, Square cells: An array cooking lesson, The PracTEX Journal (2005), no. 2, available at http://tug.org/pracjourn/2005-2/robertson/. \uparrow x
[Ryt2006] W. Rytter, The number of runs in a string: Improved analysis of the linear upper bound, STACS 2006 (Marseille, 2006) (B. Durand and W. Thomas, eds.), Lecture Notes in Comput. Sci., vol. 3884, Springer, Berlin, 2006, pp. 184-195. $\uparrow 125$
[Ryt2007] - The number of runs in a string, Inform. and Comput. 205 (2007), no. 9, 1459-1469. $\uparrow 125$
[Sch1961] M.-P. Schützenberger, On a special class of recurrent events, Ann. Math. Statist. 32 (1961), 1201-1213. $\uparrow 133$
[Séé1982] P. Séébold, Morphismes itérés, mot de Morse et mot de Fibonacci, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 6, 439-441. $\uparrow 81$
[Ser1985] C. Series, The geometry of Markoff numbers, Math. Intelligencer 7 (1985), no. 3, 20-29. $\uparrow 45$
[Sim2004] J. Simpson, Disjoint Beatty sequences, Integers 4 (2004), A12. $\uparrow 8$
[Šir1957] A. I. Širšov, On some non-associative null-rings and algebraic algebras, Mat. Sb. (N.S.) 41(83) (1957), 381-394 (Russian). $\uparrow 133$
[Šir1962] , On the bases of free Lie algebras, Algebra i Logika Sem. 1 (1962), no. 1, 14-19 (Russian). $\uparrow 42$
[Smi1876] H. J. S. Smith, Note on continued fractions, Messenger of Mathematics 6 (1876), $1-14 . \uparrow 5,44,48,49,116$
[Sta1997] R. P. Stanley, Enumerative combinatorics, Vol. 1, Cambridge Stud. Adv. Math., vol. 49, Cambridge Univ. Press, Cambridge, 1997. $\uparrow 117$
[Sta1999] , Enumerative combinatorics, Vol. 2, Cambridge Stud. Adv. Math., vol. 62, Cambridge Univ. Press, Cambridge, 1999. $\uparrow 79$
[SG2002] J. Stoye and D. Gusfield, Simple and flexible detection of contiguous repeats using a suffix tree, Theoret. Comput. Sci. 270 (2002), no. 1-2, 843-856. $\uparrow 123$
[Thu1906] A. Thue, Über unendliche Zeichenreihen, Christiania Vidensk. Selsk. Skr. (1906), no. 7, 1-22; reprinted in T. Nagell, S. Selberg, and K. Thalberg (eds.), Selected mathematical papers, Universitetsforlaget, Oslo, 1977. $\uparrow 67,97,127$
[Thu1912] , Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Christiania Vidensk. Selsk. Skr. (1912), no. 1, 1-67; reprinted in T. Nagell, S. Selberg, and K. Thalberg (eds.), Selected mathematical papers, Universitetsforlaget, Oslo, 1977. $\uparrow 67,81$
[Thu1977] , Selected mathematical papers (T. Nagell, S. Selberg, and K. Thalberg, eds.), Universitetsforlaget, Oslo, 1977. $\uparrow 67$
[TS1995] J. Tromp and J. Shallit, Subword complexity of a generalized Thue-Morse word, Inform. Process. Lett. 54 (1995), no. 6, 313-316. $\uparrow 82$
[Ukk1995] E. Ukkonen, On-line construction of suffix trees, Algorithmica 14 (1995), no. 3, 249-260. See also http://www.allisons.org/ll/AlgDS/Tree/Suffix/, where it is really online. $\uparrow 119$
[Vie1978] X. G. Viennot, Algèbres de Lie libres et monoïdes libres, Lecture Notes in Math., vol. 691, Springer, Berlin, 1978. $\uparrow 42$
[Wei1973] P. Weiner, Linear pattern matching algorithms, 14th Annual IEEE Symposium on Switching and Automata Theory (Iowa City, IA, 1973), IEEE Comput. Soc., Northridge, CA, 1973, pp. 1-11. $\uparrow 119$
[Wel1984] T. A. Welch, A technique for high-performance data compression, Computer 17 (1984), 8-19. $\uparrow 114$
[WW1994] Z. X. Wen and Z. Y. Wen, Local isomorphisms of invertible substitutions, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 4, 299-304. $\uparrow 14,37$
[Wri1959] E. M. Wright, Prouhet's 1851 solution of the Tarry - Escott problem of 1910, Amer. Math. Monthly 66 (1959), 199-201. $\uparrow 71,72$
[Zim1982] A. I. Zimin, Blocking sets of terms, Mat. Sb. (N.S.) 119(161) (1982), no. 3, 363375 (Russian). $\uparrow 127,131,132$

Index

Key words and phrases from the text appear in lexicographic order, as usual. Mathematical symbols appear in the order in which they occured within the text. Mixtures of symbols and text, such as k-avoidable pattern, are likely to be found among the key words (omitting the symbols), e.g., under avoidable pattern.
\mathbb{N}, xi
$|w|_{a}$, xi
m^{∞}, xi
$a \perp b, 5$
$C(a, b), 6$
xxyxxyxxyxy, 6, 17, 20, 24, 25, 30, 44, 48, 49
G, $9,20,25,62$
D, 9,25
$\widetilde{\mathbf{G}}, 9$
$\widetilde{\mathbf{D}}, 9,20,62$
E, 9
$\mathcal{G}, 9,21$
$\widetilde{\mathcal{D}}, 10$
$\mathrm{SL}_{2}(\mathbb{Z}), 19$
$w^{+}, 24$
Pal, 24
$\mathbb{N}^{2 \times 2}, 31$
$\mathbb{P}, 56$
$\lambda_{i}(A), 56$
$\mathbb{R}_{>0}, 56$
$M(A), 56$
$\boldsymbol{t}, 69$
$\overline{\boldsymbol{s}}, 70$
$\varphi^{\infty}, 70$
$\operatorname{bin}(n), 77$
$\mathbb{F}_{q}, 80$
$c_{t}(n), 82$
$\operatorname{Han}(n, i, j), 92,95$
$C(h), 102$
$O(n), 109$
$w(i, j), 112$
$w_{(i)}, 112$
$w^{(i)}, 112$
/ $\wedge, 112,117$
$\wedge, 112$
$\pi_{w}(u), 115,117$
Suff $(w), 117$
RT(n), 126
$\doteq, 131$
Abelian k-avoidable, 127
Abelian instance, 127
accepted by an automaton, 86
algebraic series, 79, 89
alphabet, xi
alternating lexicographic order, 58, 61
anagram, 127
aperiodic sequence, 43
k-automatic sequence, 78
automatic sequences, 94
automaton, 77, see also finite deterministic, 86
pushdown, 88
k-avoidable pattern, 127
k-avoidable set, 131
Bézout's Lemma, 20, 35, 53
balanced $_{1}, 41,44,64$
balanced $_{2}, 42$
basis, 33 , see also free group
bi-ideal sequence, 133
bifix code, 102
big- $O, 109$
binary quadratic form, 55
discriminant of a, 55
equivalent, 55
minimum of a, 55
reduced, 55
binary word, 69
bissective code, 105
block, 58, 71
Burrows - Wheeler transform, 39
Cayley graph, 7, 30, 39
centered square, 111
left-, 111
right-, 111
Chomsky hierarchy, 85

Christoffel morphism, 9, 22, 37
$\mathbf{G}, \mathbf{D}, \widetilde{\mathbf{G}}, \widetilde{\mathbf{D}}$ and $\mathbf{E}, 9$
Christoffel path, 5, 49
closest point for a, 17
lower, 5
slope, 5
upper, 5
Christoffel tree, 35, 47, 50, 53
Christoffel word, 6
lower, 6,8
nontrivial, 6,23
of slope $4 / 7,6,17,20,24,25,30,44,48$, 49
slope, 6
standard factorization, 17, 25, 35
trivial, 6
upper, 6, 23
circular word, 42, 79
closest point, 17
code, 101
bifix, 102
bissective, 105
comma-free, 102
faithful, 105
infix, 102
left synchronizing, 105
prefix, 102
prefix-suffix, 105
ps-code, 105
right synchronizing, 105
strongly synchronizing, 105
suffix, 102
synchronizing, 105
uniform, 102
comma-free code, 102
compact suffix tree, 118
complexity function, 82
conjugate
group-theoretic, 13, 33
monoid-theoretic, xii, 13, 33
root, $7,51,63$
contain, xii
context-free grammar, 87
derivation, 87
leftmost derivation, 89
context-free language, 85,88
pumping lemma for a, 90
unambiguous, 89
continuant, 48
continued fraction, 47, 58
continuant, 48
representation, 47
cover relation, 117
covers, 117
critical exponent, 126, 134
Crochemore factorization, 114
cutting sequence, 7
degree, 71, see also Tarry-Escott
derivation, 87
derived, 87
de Bruijn word, 78, 79
diagonal, 80, see also generating series
discretization, 5, 134
discriminant, 55
n-division, 133
empty word, xi
erasing morphism, 14
exponent, 126
critical, 126, 134
extendible repetition, 125
extreme point, 49
factor, xii
left special, 82, 84
proper, xii
right special, 82
Factor Problem, 117
factorization, xi
Crochemore, 114
n-division, 133
left Lyndon, 42
right Lyndon, 42
standard, 17, 25
faithful code, 105
Fibonacci, 117
number, 51, 79, 109, 111
word, $7,57,99,100,109,116,134$
words, 109, 116
final states, 77 , see also finite deterministic automaton
Fine-Wilf Theorem, 32, 40, 110
finite deterministic automaton, $77,79,86$, 87, 91, 94, 100, 119
final states, 77
initial state, 77
next state function, 77
states, 77
first occurrence, 115, 117
$\pi_{w}(u), 115,117$
formal language theory, 85
forumlae of Justin, 25-27
fractal rendering, 78
fractional power, 126
free group, 33
basis, 33
inner automorphism, 34
positive element, 33
primitive element, 33
generalized Thue-Morse word, 72
generating series, 79
algebraic, 79
diagonal, 80
Fibonacci numbers, 79
rational, 79
transcendental, 79
golden ratio, 7, 51, 109
grammar, 87, see also context-free
Hanoi word, 92
and Thue-Morse word, 94
automatic sequence, 94
ideal solution, see also Tarry - Escott
identity morphism, xii
implicit suffix tree, 119
index
recurrence, 84
starting, 115, 117
infix code, 102
initial state, 77 , see also finite deterministic automaton
inner automorphism, 34
instance
Abelian, 127
of a pattern, 127
iterate of an endomorphism, 70
iterated palindromic closure, 24
König's Lemma, 130
label, 7, 17
language, 85, 119
context-free, 85, 88
regular, 85,86
leaf node, 117
left factorization, 42
left special factor, 82,84
left synchronizing code, 105
left-centered square, 111
leftmost derivation, 89
length
in the free group, 33
in the free monoid, xi
letter-doubling morphism, 84
letters, xi
Levi's Lemma, 110
lexicographic order, 39
alternating, 58, 61
longest common prefix, 112
/^, 112
longest common suffix, 112
^, 112
lower Christoffel word, 8
Lyndon word, 39, 41, 78, 133
left factorization, 42
right factorization, 42
magic square, 74
La Sagrada Família, 74
Melencolia I, 74
from the Thue-Morse word, 74
of order $2^{m}, 74$
order, 74

Markoff numbers, 57
Markoff spectrum, 64
maximal repetition, 125
mediant, 52
minimal period, 125
k-mismatch, 123
morphism, xii
Christoffel, 9, 37
erasing, 14
exchange, 70
fixed point of a, 70
Hall, 98, 100
identity, xii
iterate, 70
letter-doubling, 84
nonerasing, 14, 101
period-doubling, 93
positive, 37
square-free, 100
k-square-free, 100
Thue-Morse, 70
trivial, xii, 100
uniform, 101
k-uniform, 70, 78
morphism of Hall, 98, 100
next state function, 77, see also finite
deterministic automaton
nonerasing morphism, 14
nonerasingmorphism, 101
nonextendible repetition, 125
nontrivial Christoffel word, 23
occurrence, 125
extendible repetition, 125
nonextendible repetition, 125
number of, xi, 26, 107
of a factor, xii
starting index, xii, 82, 115
Open Question
Thue-Morse generating series, 80
context-free language of non-factors of \boldsymbol{t}, 89
Markoff numbers, 58
order, 74 , see also magic square
overlap, 81, 110
overlap-free word, 81
palindrome, xi, 13, 23, 61
palindromic closure, 24
palindromic prefix, 24, 27
palindromic suffix, 24
PATH, 118
pattern, 127
Abelian k-avoidable, 127
Abelian instance of a, 127
k-avoidable, 127
k-avoidable set, 131
instance of a, 127
k-unavoidable, 131
k-unavoidable set, 131
period, 25, 27
minimal, 125
period-doubling morphism, 93
periodic phenomena, 44
periodic sequences, 44
Pick's Theorem, 19, 20
poset
cover relation, 117
covers, 117
position, 118
positive element, 33
positive morphism, 37
k th-power-free word, 97
prefix, xi
longest common, 112
palindromic, 24,27
proper, xii
prefix array, 112
prefix code, 102
prefix poset, 107, 117
prefix-suffix code, 105
primitive element, 33
primitive word, 6, 33, 107
productions, 87
proper factor, xii
ps-code, 105
pumping lemma
for context-free languages, 90
for regular languages, 86
pumping length
for regular languages, 86
pushdown automata, 88
quadratic form
binary, 55
equivalent, 55
minumum of a, 55
reduced, 55
quadratic number, 63
rational series, 79,89
recurrence index, 84
recurrent, 84
uniformly recurrent, 84
recurrent word, 133
reduced word, 33
regular language, 85, 86
pumping lemma for a, 86
rejected by an automaton, 86
relatively prime, 5
repetition, 125
extendible, 125
maximal, 125
nonextendible, 125
repetition threshold, 126
reversal, xi, 13, 23
right factorization, 42
right special factor, 82
right synchronizing code, 105
right-centered square, 111
root node, 117
run, 125
sequence
aperiodic, 43
bi-ideal, 133
cutting, 7
periodic, 44
ultimately periodic, 43, 87, 90
sesquipowers, 133
shift registers, 78
size, 71, see also Tarry - Escott
skew-words, 44
square
centered, 111
left-centered, 111
right-centered, 111
square-free morphism, 100
k-square-free morphism, 100
square-free word, 97
standard factorization, $17,22,35,53$
starting index, xii, 82, 115, 117 $\pi_{w}(u), 115,117$
starting position, see also starting index
states, 77, see also finite deterministic automaton
Stern-Brocot tree, 47, 52
strongly synchronizing code, 105
Sturmian word, 6, 41, 43, 44, 126
characteristic, 6, 134
suffix, xii
longest common, 112
palindromic, 24
proper, xii
Suff $(w), 117$
SUFFIX, 118
suffix array, 112
suffix code, 102
suffix link, 122
suffix node, 117
suffix tree, 117
$\mathcal{T}(w), 117$
compact, 118
implicit, 119
leaf node, 117
PATH, 118
Position, 118
root node, 117
SUFFix, 118
suffix node, 117
unadorned, 117
synchronizing code, 105
left, 105
right, 105
strongly, 105

Tarry-Escott problem, 71
Thue-Morse word, 72
degree of a, 71
ideal solution, 73
Prouhet's solution, 72
size of a, 71
terminal letters, 87
test set for square-freeness, 101
Three Squares Lemma, 107
Thue-Morse morphism, 70, 78
Thue-Morse word, 69, 77, 79, 81, 85, 86, 88, 94
and Hanoi word, 94
automaton, 77
complexity function, 82
generalized, 72
generating series, 80
Toeplitz sequence, 95
Toeplitz word, 95
Tower of Hanoi, 90
transcendental series, 79, 89
trivial morphism, xii, 100
ultimately periodic, 43, 87, 90
unadorned suffix tree, 117
unambiguous context-free language, 89
k-unavoidable pattern, 131
k-unavoidable set, 131
uniform code, 102
uniform morphism, 101
k-uniform morphism, 70, 78
uniformly recurrent, 84
upper Christoffel word, 23
variables, 87
word, xi
accepted, 86
anagram of a, 127
as a fixed point of a morphism, 70
balanced $_{1}, 41$
balanced $_{2}$ Lyndon, 42
binary, 69
characteristic Sturmian, 6, 134
Christoffel, 6
circular, 42, 79
conjugate, 6
contains, xii
critical exponent, 126, 134
derived, 87
de Bruijn, 78
exponent, 126
factor of, xii
Fibonacci, 100, 116, 134
fractional power, 126
Hanoi, 92
infinite, xi
Lyndon, 39, 41, 78, 133
minimal period, 125
occurrence, xii, 125
overlap, 81, 110
overlap-free, 81
pattern, 127
k th-power-free, 97
primitive, 6, 33, 107
recurrence index, 84
recurrent, 84, 133
reduced, 33
rejected, 86
repetition, 125
reversal, 23
square-free, 97
Sturmian, 43, 126
Thue-Morse, 69
Toeplitz, 95
ultimately periodic, 87
uniformly recurrent, 84
Zimin, 131
Zimin word, 131

The two parts of this text are based on two series of lectures delivered by Jean Berstel and Christophe Reutenauer in March 2007 at the Centre de Recherches Mathématiques, Montréal, Canada. Part I represents the first modern and comprehensive exposition of the theory of Christoffel words. Part II presents numerous combinatorial and algorithmic aspects of repetition-free words stemming from the work of Axel Thue-a pioneer in the theory of combinatorics on words.
A beginner to the theory of combinatorics on words will be motivated by the numerous examples, and the large variety of exercises, which make the book unique at this level of exposition. The clean and streamlined exposition and the extensive bibliography will also be appreciated. After reading this book, beginners should be ready to read modern research papers in this rapidly growing field and contribute their own research to its development.

Experienced readers will be interested in the finitary approach to Sturmian words that Christoffel words offer, as well as the novel geometric and algebraic approach chosen for their exposition. They will also appreciate the historical presentation of the Thue-Morse word and its applications, and the novel results on Abelian repetition-free words.

For additional information and updates on this book, visit www.ams.org/bookpages/crmm-27

