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Preface

“Open algebraic surface” is a synonym for “algebraic surface which is not nec-
essarily complete”. An open algebraic surface is understood to be a Zariski open
set of a complete algebraic surface. An affine algebraic surface is a typical example
of an open algebraic surface, and it is embedded into a projective algebraic surface
as the complement of a hypersurface section of the projective surface.

There is a long history of research on projective algebraic surfaces and we have
the beautiful Enriques—Kodaira, classification of such surfaces. Thanks to the work
of many predecessors, we have powerful methods to look into the geometry and
topology of projective algebraic surfaces. Compared to the status of the theory of
projective (or complete) algebraic surfaces there was limited knowledge to study
the geometric or topological structure of open algebraic surfaces until the early
1970’s, when those people like C. P. Ramanujam, S. S. Abhyankar, T. T. Moh, and
M. Nagata began to consider the following problems:

(1) Embedding of the affine line into the affine plane.

(2) The cancellation problem, which asks whether or not an affine variety X
is isomorphic to the affine space A™ of dimension n provided X x A™ is
isomorphic to the affine space A®*™,

(3) The structure of the automorphism group Aut(A™) of the affine space A™
of dimension n.

The difficulty lies in the lack of methods to examine the geometric structure of affine
varieties and the behavior of a curve, say in the affine plane A2, when it approaches
the points at infinity. It was gradually revealed through the works, [1,70, 74], for
example, how to overcome the difficulty.

A turning point in research into non-complete algebraic varieties probably oc-
curred when litaka [33] introduced the notion of logarithmic Kodaira dimension
of an algebraic variety and indicated the possibility of classifying non-complete
algebraic varieties via logarithmic Kodaira dimension in a way parallel to the clas-
sification of projective algebraic varieties via Kodaira dimension (or canonical di-
mension). Indeed, when a smooth algebraic variety X is embedded into a smooth
projective algebraic variety V in such a way that D := V — X is a divisor with
simple normal crossings, then the logarithmic Kodaira dimension of X is defined
as an invariant to measure the growth of dim H°(V,n(D + Ky)) when n tends to
the positive infinity. It is shown to be proper to the variety X, that is to say,
independent of the embedding X into V of the above kind. In the surface case,
this suggested considering the Enriques—Kodaira classification in the framework of
open algebraic surfaces.

This book is organized to follow this suggestion. Namely, we recall the En-
riques—Kodaira classification in Chapter 1 and develop the classification theory of

vii
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open algebraic surfaces in Chapter 2. To compare the development of both theo-
ries, we explain the complete case by going rather too much into the details. But
we believe that the theory of open algebraic surfaces can be better understood by
the comparison of both theories. To write Chapter 1, we basically followed the
references [6,67]. The author believes that the theory of open algebraic surfaces
should be extended also to the case where the ground field has positive characteris-
tic. Hence Chapter 1 is written to cover the case of positive characteristic as well.
Chapter three is mostly for the accounts how the theory of open algebraic surfaces
is applied to affine algebraic surfaces.

The author was invited to write a book on open algebraic surfaces by Peter
Russell of McGill University and Martin Goldstein of the Centre de recherches
mathématiques, Université de Montréal when the author visited Montreal in 1994
on the occasion of the Canadian Mathematical Society Winter Meeting. He is very
grateful to them for constant encouragement during the writing of the manuscript.

M. Miyanishi
July, 1999
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smooth part, 59
smooth proper, 59

fibration, 4, 59

(—1)—component, 19

elliptic, 23
proper, 59
quasi-elliptic, 23

relatively minimal, 19

smooth proper, 59
fork, 93

(—2)—fork, 94

admissible, 93

central component, 93

rational, 93

fundamental cycle, 52

genus
nth plurigenus, 5

arithmetic genus formula, 5
arithmetic genus of a curve, 5
arithmetic genus of a surface, 5

geometric, 5
germ, 117

half-point
attachment, 233
detachment, 233

Hirzebruch surface, 22
Hodge index theorem, 7

homology plane, 228

Q-, 228
logarithmic, 228

logarithmic Q-, 228

Iitaka fibration theorem, 60

invariant

local fundamental group, 56
local quadratic transformation, 1
log
exceptional curve of the first kind, 122
exceptional curve of the second kind, 122
projective surface, 122
terminal singularity, 117, 118
log del Pezzo surface, 142
complete, 142
open, 142
logarithmic
m—genus, 66
n—form, 66
form, 65
geometric genus, 66
irregularity, 66
Kodaira dimension, 66
ramification divisor, 66
logarithmic ramification formula, 66
loop, 73

mapping
proper birational, 65
proper rational, 65
strictly rational, 65
minimal, 3
minimal resolution, 122
model
almost minimal, 107
log canonical, 191
minimal, 3
relatively minimal, 3, 86, 122
morphism
generically separable, 68
multiplicity, 203

NC-minimal, 232

Noether’s formula, 5

nonsingular triple, 68
complete, 68



normal projective completion, 198

pair
almost minimal, 107
peeling, 90
pencil, 4
irrational, 4
irreducible, 4
rational, 4
Picard number, 6
point
infinitely near, 1
projection formula, 57
projective bundle, 21
tautological line bundle, 21
pseudo-reflection, 53, 212

rational surface, 10
relative duality theorem, 39
relatively minimal, 122, 198
relatively minimal model, 198
resolution, 51

good, 52

minimal, 52

very good, 52
Riemann—Roch theorem, 5
rod, 87

(—2)-rod, 94

rational, 88
ruled surface, 10

rational, 21
ruledsurface

irrational, 21

section, 19
minimal, 22
singularity
cuspidal, 136
elliptic, 136
log-canonical, 136
quasi-cuspidal, 136
quasi-elliptic, 136
quotient, 53
rational, 52
rational double, 56
strongly minimal, 136, 200
subalgebra
cofinite, 209
subgroup
small, 53, 212
surface
affine-ruled, 72
connected at infinity, 72
hyperelliptic, 44
log projective, 122
quasi-hyperelliptic, 44

total transform, 57
transform
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proper, 1
total, 1
transpose, 93
tree, 73
twig, 87
maximal, 87
rational, 88

variety
resoluble, 68

weighted dual graph, 52
weighted graph, 87
branching number, 87
edge, 87
tip, 87
weight, 87

Zariski-Fujita decomposition, 69
nef component, 69
negative component, 69
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Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily
complete. An open algebraic surface is understood as a Zariski open set of a projective
algebraic surface. There is a long history of research on projective algebraic surfaces, and
there exists a beautiful Enriques-Kodaira classification of such surfaces. The research
accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a
classification theory of open algebraic surfaces comparable to the Enriques-Kodaira
theory. This research provides powerful methods to study the geometry and topology of
open algebraic surfaces.

The theory of open algebraic surfaces is applicable not only to algebraic geometry, but
also to other fields, such as commutative algebra, invariant theory, and singularities. This
book contains a comprehensive account of the theory of open algebraic surfaces, as well
as several applications, in particular to the study of affine surfaces. Prerequisite to under-
standing the text is a basic background in algebraic geometry. This volume is a
continuation of the work presented in the author’s previous publication, Algebraic
Geometry, volume 136 in the AMS series, Translations of Mathematical Monographs.
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