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Abstract. Work of Borel on higher regulators for number fields is discussed. The Borel regulator
for K3 of a number field is described explicitly in terms of the dilogarithm function.

A generalization, based on functions related to the dilogarithm and to the Dedekind η-function,
leads to a regulator for K2 of an elliptic curve E over a number field. Elements in K2(E) analogous
to cyclotomic units are described. The regulator is evaluated on these elements and the resulting
values related to the value of the Hasse-Weil zeta function of E at s = 2 when E has complex
multiplication. This regulator formula is worked out in detail for the case of E defined over Q

with complex multiplication by the ring of integers in an imaginary quadratic field, when it takes
a particularly simple form.
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Author’s Apology

“The author apologizes for the long delay in publishing this mono-
graph. The reader should understand that since this work was done,
fundamental ideas of A. Beilinson, A. Suslin, V. Voevodsky, and others
have totally transformed the landscape. Sometimes it is fun to drive
around in a Model T Ford but one should be aware there are much
faster cars on the road.”
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Higher Regulators, Algebraic K-Theory, and Zeta Functions of 
Elliptic Curves

Spencer J. Bloch

This book is the long-awaited publication of the famous Irvine lectures by Spencer Bloch. 
Delivered in 1978 at the University of California at Irvine, these lectures turned out to be
an entry point to several intimately-connected new branches of arithmetic algebraic geom-
etry, such as regulators and special values of L-functions of algebraic varieties, explicit 
formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventu-
ally the general theory of mixed motives which unifi es and underlies all of the above (and
much more). In the 20 years since, the importance of Bloch's lectures has not dimin-
ished. A lucky group of people working in the above areas had the good fortune to possess 
a copy of old typewritten notes of these lectures. Now everyone can have their own copy 
of this classic.


