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Introduction

In these lectures we would like to touch on the mysterious role that groups,
especially Lie groups, play in revealing the laws of nature. We will try to il-
lustrate the hidden role of certain groups by focusing on a single and familiar
example. In classical mechanics the example manifests itself as Kepler mo-
tion, the motion of a planet under the attraction of the sun according to Ke-
pler’s laws. Newton realized that Kepler’s second law, equal areas are swept
out in equal times, has to do with the fact that the force is directed radially
to the sun. Kepler’s second law is really the assertion of the conservation of
angular momentum, and this reflects the rotational symmetry of the system
about the origin of the force. Kepler’s second law is true for any classical me-
chanical system exhibiting this rotational symmetry. In today’s language we
would say that the group O(3) (the orthogonal group in three dimensions) is
responsible for Kepler’s second law. But Newton also realized that Kepler’s
first and third laws are special to the inverse square law of attraction. By
the end of the nineteenth century it was realized (by Runge and Lenz) that
Kepler’s first and third laws have to do with the group O(4)—that the inverse
square law of attraction has an O(4) symmetry, where O(4) denotes the or-
thogonal group in four dimensions. But this four-dimensional orthogonal
group does not act on ordinary three-dimensional space. Rather, it acts on a
portion of the six-dimensional phase space of the planet, the portion that de-
scribes planetary (as opposed to hyperbolic) motion. (In fact, as we shall see,
the story is a bit more complicated, in that one must “complete” the phase
space by including collision orbits so that the planet can pass through the
sun.) In this century it has been realized that even larger groups are involved
in Kepler motion. For example we will see that the fifteen-dimensional group
0O(2, 4) of all orthogonal transformations of six space preserving a quadratic
form of signature (2, 4) plays a key role and even the symplectic groups
in eight- and twelve-dimensional space get involved. In quantum mechan-
ics our example manifests itself as the “hydrogen atom.” Indeed, in 1925
(before Schrodinger published his famous equation!) Pauli derived the spec-
trum of the hydrogen atom by following the procedures of Lenz and Runge,
but where the “Poisson brackets” of classical mechanics are replaced by the



v1 INTRODUCTION

“commutator brackets” of quantum mechanics. Once again, as was realized
by Fock, it is the group O(4) which is behind the very special character of
the spectrum of the hydrogen atom. We have tried to write the first part of
these lectures with the general mathematical reader in mind. So the first six
sections and the beginning of section seven should not make heavy technical
demands. We have also added two appendices to round out the picture for
the general reader.

Let us give a short summary of the contents for the specialist. The thrust
of the first six sections is to show that the Kepler problem and the hydro-
gen atom exhibit o(4) symmetry and that the form of this o(4) symmetry
determines the inverse square law in classical mechanics and the spectrum
of the hydrogen atom in quantum mechanics. All this is in the spirit of the
classical treatment of Runge, Lenz, Pauli, Fock, and Moser. The space of
regularized elliptical motions of the Kepler problem is symplectically equiv-
alent to 77S° , the space of nonzero covectors in T*S® as was realized by
Souriau who called TS’ the Kepler manifold. This manifold plays the cen-
tral role in this monograph. It is connected with the Howe pairs, ([H89]),
0(2,4) xSI(2, R) c Sp(12,R) and U(2, 2) x U(1) C sp(8, R). Accord-
ing to the general theory of the classical mechanics of such pairs, [KKS78],
it can be realized as a (component of a) coadjoint orbit of the first factor
or a reduction of the second factor. As a coadjoint orbit of SO(2, 4) or
SU(2, 2) it is the minimal nilpotent coadjoint orbit of these locally isomor-
phic groups; hence the problem of its quantization can be regarded as an
instance of the interesting question of representations associated with such
orbits. As a Marsden-Weinstein reduction at 0 of Sl(2, R), the principle
of reduction in stages shows that T*S? can be regarded as the space of for-
ward null geodesics on the conformal completion, M , of Minkowski space.
In §§13-21 we study the various cosmological models in this same conformal
class (and having varying isometry groups) from the viewpoint of projective
geometry. On the other hand, the Kepler Hamiltonian can be derived by
reduction from a geodesic flow in five dimensions, applying [I81] a general
formula for the phase space of a classical particle moving in the presence of
a Yang-Mills field; see [S77a] and [We78]. The principle of quantization of
constraints [D64] can then be used to compute the hydrogen spectrum [M89].
Thus we have an illustration of the principle put forward in [KKS78] that en-
larging the phase space can simplify the equations of motion in the classical
setting and aid in the quantization problem in the quantum setting. The
commutativity of quantization and reduction was worked out in the Kahler
setting in [GS82c]; for a recent application of this method in an infinite-
dimensional situation see [APW89]. A short summary of the homological
quantization of constraints following [KS87] and a list of recent applications
of this method to many interesting finite-dimensional settings, [DET89] and
[DEGST90], is given in §12. Finally, in §22 we outline Kostant’s theory, in
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which a unitary representation is associated to the minimal nilpotent orbit
of SO(4, 4), and in which electromagnetism and gravitation are unified in
a Kaluza-Klein type theory in six dimensions.

Much of the work illustrated here represents joint research with Kostant.
We would like to thank Drs. Duval, Elhadad, and Tuynman for supplying us
with the details of the computations in [DET89] and [DEGST90], and Pro-
fessor Mladenov for useful conversations and for supplying us with the page
proofs of [M89]. We would also like to thank Tad Wieczorek for correcting
a number of errors in a preliminary version of this manuscript.

For background material in symplectic geometry we refer to our book
[GS84] and in general relativity to the book by Kostant [K88].

Apology. One of the key groups we will be using is the connected component
of the identity of O(2, 4), a group which has four components. In contrast
to standard usage, we will denote this group (and similar groups for other
signatures) by SO(2, 4). So for us the symbol S will mean “connected com-
ponent” rather than “determinant one.” This is to avoid having to deal with
unpleasant subscripts.
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This book is based on the Colloquium Lectures presented by Shlomo Sternberg in 1990.
The authors delve into the mysterious role that groups, especially Lie groups, play in
revealing the laws of nature by focusing on the familiar example of Kepler motion: the
motion of a planet under the attraction of the sun according to Kepler’s laws. Newton
realized that Kepler’s second law—that equal areas are swept out in equal times—has to
do with the fact that the force is directed radially to the sun. Kepler’s second law is real-
ly the assertion of the conservation of angular momentum, reflecting the rotational sym-
metry of the system about the origin of the force. In today’s language, we would say that
the group O(3) (the orthogonal group in three dimensions) is responsible for Kepler’s
second law. By the end of the nineteenth century, the inverse square law of attraction was
seen to have O (4) symmetry (where O (4) acts on a portion of the six-dimensional phase
space of the planet). Even larger groups have since been found to be involved in Kepler
motion. In quantum mechanics, the example of Kepler motion manifests itself as the
hydrogen atom. Exploring this circle of ideas, the first part of the book was written with
the general mathematical reader in mind.

The remainder of the book is aimed at specialists. It begins with a demonstration that the
Kepler problem and the hydrogen atom exhibit O (4) symmetry and that the form of this
symmetry determines the inverse square law in classical mechanics and the spectrum of
the hydrogen atom in quantum mechanics. The space of regularized elliptical motions of
the Kepler problem (also known as the Kepler manifold) plays a central role in this book.
The last portion of the book studies the various cosmological models in this same con-
formal class (and having varying isometry groups) from the viewpoint of projective
geometry. The computation of the hydrogen spectrum provides an illustration of the prin-
ciple that enlarging the phase space can simplify the equations of motion in the classical
setting and aid in the quantization problem in the quantum setting. The authors provide
a short summary of the homological quantization of constraints and a list of recent appli-
cations to many interesting finite-dimensional settings. The book closes with an outline
of Kostant’s theory, in which a unitary representation is associated to the minimal nilpo-
tent orbit of SO(4,4) and in which electromagnetism and gravitation are unified in a
Kaluza—Klein-type theory in six dimensions.
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