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Preface

The factors of any integer can be found quickly by a quantum computer. Since
P. Shor discovered this efficient quantum factoring algorithm in 1994 [S], people
have started to work on building these new machines. As one of those people,
I joined Microsoft Station Q in Santa Barbara to pursue a topological approach
in 2005. My dream is to braid non-abelian anyons. So long hours are spent on
picturing quasiparticles in fractional quantum Hall liquids. From my office on
UCSB campus, I often see small sailboats sailing in the Pacific Ocean. Many times
I am lost in thought imagining that the small sailboats are anyons and the ocean
is an electron liquid. Then to carry out a topological quantum computation is as
much fun as jumping into such small sailboats and steering them around each other.

Will we benefit from such man-made quantum systems besides knowing factors
of large integers? A compelling reason for a yes comes from the original idea of
R. Feynman: a quantum computer is an efficient universal simulator of quantum
mechanics. This was suggested in his original paper [Fe82]. Later, an efficient sim-
ulation of topological quantum field theories was given by M. Freedman, A. Kitaev,
and the author [FKW]. These results provide support for the idea that quantum
computers can efficiently simulate quantum field theories, although rigorous results
depend on mathematical formulations of quantum field theories. So quantum com-
puting literally promises us a new world. More speculatively, while the telescope
and microscope have greatly extended the reach of our eyes, quantum computers
would enhance the power of our brains to perceive the quantum world. Would it
then be too bold to speculate that useful quantum computers, if built, would play
an essential role in the ontology of quantum reality?

Topological quantum computation is a paradigm to build a large-scale quantum
computer based on topological phases of matter. In this approach, information is
stored in the lowest energy states of many-anyon systems, and processed by braiding
non-abelian anyons. The computational answer is accessed by bringing anyons to-
gether and observing the result. Topological quantum computation stands uniquely
at the interface of quantum topology, quantum physics, and quantum computing,
enriching all three subjects with new problems. The inspiration comes from two
seemingly independent themes which appeared around 1997. One was Kitaev’s idea
of fault-tolerant quantum computation by anyons [Ki1]; the other was Freedman’s
program to understand the computational power of topological quantum field the-
ories [Fr1]. It turns out the two ideas are two sides of the same coin: the algebraic
theory of anyons and the algebraic data of a topological quantum field theory are
both modular tensor categories. The synthesis of the two ideas ushered in topo-
logical quantum computation. The topological quantum computational model is

ix
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efficiently equivalent to other models of quantum computation, such as the quan-
tum circuit model, in the sense that all models solve the same class of problems in
polynomial time [FKW, FLW1, FKLW].

Besides its theoretical esthetic appeal, the practical merit of the topological
approach lies in its error-minimizing hypothetical hardware: topological phases of
matter are fault-avoiding or deaf to most local noises, and unitary gates are imple-
mented with exponential accuracy. There exist semi-realistic local model Hamil-
tonians whose ground states are proven to be error-correcting codes such as the
celebrated toric code. It is an interesting question to understand whether fault-
avoidance will survive in more realistic situations, such as at finite temperatures
or with thermal fluctuations. Perhaps no amount of modeling can be adequate for
us to completely understand Mother Nature, who has repeatedly surprised us with
her magic.

We do not have any topological qubits yet. Since scalability is not really an issue
in topological quantum computation—rather, the issue is controlling more anyons
in the system—it follows that demonstrating a single topological qubit is very close
to building a topological quantum computer. The most advanced experimental
effort to build a topological quantum computer at this writing is fractional quantum
Hall quantum computation. There is evidence both experimentally and numerically
that non-abelian anyons exist in certain 2-dimensional electron systems that exhibit
the fractional quantum Hall effect. Other experimental realizations are conceived
in systems such as rotating bosons, Josephson junction arrays, and topological
insulators.

This book expands the plan of the author’s 2008 NSF-CBMS lectures on knots
and topological quantum computing, and is intended as a primer for mathematically
inclined graduate students. With an emphasis on introduction to basic notions and
current research, the book is almost entirely about the mathematics of topological
quantum computation. For readers interested in the physics of topological quantum
computation with an emphasis on fractional quantum Hall quantum computing,
we recommend the survey article [NSSFD]. The online notes of J. Preskill [P]
and A. Kitaev’s two seminal papers [Ki1] [Ki2] are good references for physically
inclined readers. The book of F. Wilczek [Wi2] is a standard reference for the
physical theory of anyons, and contains a collection of reprints of classic papers on
the subject.

The CBMS conference gave me an opportunity to select a few topics for a
coherent account of the field. No efforts have been made to be exhaustive. The
selection of topics is personal, based on my competence. I have tried to cite the
original reference for each theorem along with references which naturally extend the
exposition. However, the wide-ranging and expository nature of this monograph
makes this task very difficult if not impossible. I apologize for any omission in the
references.

The contents of the book are as follows: Chapters 1,2,4,5,6 are expositions, in
some detail, of Temperley-Lieb-Jones theory, the quantum circuit model, ribbon
fusion category theory, topological quantum field theory, and anyon theory, while
Chapters 3,7,8 are sketches of the main results on the selected topics. Chapter
3 is on the additive approximation of the Jones polynomial, Chapter 7 is on the
universality of certain anyonic quantum computing models, and Chapter 8 is on
the mathematical models of topological phases of matter. Finally, Chapter 9 lists a
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few open problems. Chapters 1,2,3 give a self-contained treatment of the additive
approximation algorithm. Moreover, universal topological quantum computation
models can be built from some even-half theories of Jones algebroids such as the
Fibonacci theory. Combining the results together, we obtain an equivalence of the
topological quantum computational model with the quantum circuit model. Chap-
ters 1,2,3, based on graphical calculus of ribbon fusion categories, are accessible to
entry-level graduate students in mathematics, physics, or computer science. A rib-
bon fusion category, defined with 6j symbols, is just some point up to equivalence
on an algebraic variety of polynomial equations. Therefore the algebraic theory of
anyons is elementary, given basic knowledge of surfaces and their mapping class
groups of invertible self-transformations up to deformation.

Some useful books on related topics are: for mathematics, Bakalov-Kirillov [BK],
Kassel [Kas], Kauffman-Lins [KL], and Turaev [Tu]; for quantum computation,
Kitaev-Shen-Vyalyi [KSV] and Nielsen-Chuang [NC]; and for physics, Altland-
Simons [AS], Di Francesco–Mathieu-Senechal [DMS], and Wen [Wen7].

Topological quantum computation sits at the triple juncture of quantum topol-
ogy, quantum physics, and quantum computation:

TQC

QPQT

QC

The existence of topological phases of matter (TPM) with non-abelian anyons would
lead us to topological quantum computation (TQC) via unitary modular tensor
categories (UMTC):

TPM �� UMTC �� TQC

Thus the practical aspect of topological quantum computation hinges on the exis-
tence of non-abelian topological states.

Will we succeed in building a large scale quantum computer? Only time will
tell. To build a useful quantum computer requires unprecedented precise control of
quantum systems, and complicated dialogues between the classical and quantum
worlds. Though Nature seems to favor simplicity, she is also fond of complexity as
evidenced by our own existence. Therefore, there is no reason to believe that she
would not want to claim quantum computers as her own.
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