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Abstract

This volume introduces equivariant homotopy, homology, and cohomology theory,
along with various related topics in modern algebraic topology. It begins (Chapters I-
VIII) with a development of the equivariant algebraic topology of spaces, culminating in a
discussion of the Sullivan conjecture that emphasizes its relationship with classical Smith
theory. It next (Chapters IX-XV) introduces equivariant stable homotopy theory, the
equivariant stable category, and the most important examples of equivariant cohomology
theories. The basic machinery that is needed to make serious use of equivariant stable
homotopy theory is then presented (Chapters XVI-XXII), along with discussions of the
Segal conjecture and generalized Tate cohomology. Finally (Chapters XXIII-XXVIII),
the book gives an introduction to “brave new algebra”, which is the study of point-set
level algebraic structures on spectra, and its equivariant applications. Emphasis is placed
on equivariant complex cobordism, and some related material on that topic is presented
in detail.

I Equivariant cellular and homology theory
II Postnikov systems, localization, and completion
IIT Equivariant rational homotopy theory
IV Smith theory
V  Categorical constructions; equivariant applications
VI The homotopy theory of diagrams
VII Equivariant bundle theory and classifying spaces
VIII The Sullivan conjecture
IX An introduction to equivariant stable homotopy
X G-CW (V) complexes and RO(G)-graded cohomology
XI The equivariant Hurewicz and suspension theorems
XII The equivarinat stable homotopy category
XIII RO(G)-graded homology and cohomology theories
XIV An introduction to equivariant K-theory
XV  An introduction to equivariant cobordism
XVI Spectra and G-spectra; change of groups; duality
XVII The Burnside ring
XVIII Transfer maps in equivariant bundle theory
XIX Stable homotopy and Mackey functors
XX The Segal conjecture
XXI Generalized Tate cohomology
XXII Twisted half-smash products and function spectra
XXIII Brave new algebra
XXIV Brave new equivariant foundations
XXV Brave new equivariant algebra
XXVI Localization and completion in complex bordism
XXVII A completion thbeorem in complex cobordism
XXVIII Calculations in complex equivariant bordism

vii
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334 XXVIIl. CALCULATIONS IN COMPLEX EQUIVARIANT BORDISM
complement W — V, the inclusion induces a natural transformation o"~V :
prigg 3l 8

2. Stably almost complex structures and bordism

When G is the trivial group, a stably almost complez structure on a compact
smooth manifold M is an element [¢] € K(M), which goes to the class {vM] of
the stable normal bundle under the map

K(M) — KO(M).

It is, of course, essentially equivalent to define this with [rM] replacing [vM],
since these classes are additive inverses in KO(M).
The following definition gives the obvious equivariant generalization of this.

DEFINITION 2.1. If [¢] € Kq(M) is a lift of [¥M] € KOg(M ) under the
natural map, we call the pair (M, [¢]) a normally almost complex G-manifold.

We will use the notation Mj¢) when necessary, but we will drop [£] whenever
there is no risk of confusion.

The bordism theory of these objects, denoted mu¢, is the “complex analog” of
the unoriented theory mo¢ discussed in Chapter XV. If V is a complez G-module
and (M,0M)y is a G-manifold with a stably almost complex structure, then
its V-suspension becomes a G-manifold after “straightening the angles”, and
[€] = [ev] is a complex structure on £V (M,0M). This gives rise to a suspension
homomorphism

UV : muf(Xa A) — mug—i—lV](Ev(Xa A))a

which sends the class of a map (M,0M) — (X, A) to the class of its suspension.
Due to the failure of G-transversality, both the suspension homomorphisms and
the Pontrjagin-Thom map are generally not bijective.

We construct a stabilized version of this theory as follows. Let % be an
infinite-dimensional complex G-module equipped with a hermitian inner product
whose underlying R-linear structure is that of a complete G-universe. Define

MUE(X, A) = colimy mul (2Y (X, A)),

where V ranges over all finite-dimensional complex G-subspaces of % and the
colimit is taken over all suspension maps induced by inclusions. We should
perhaps point out that MU is not a connective theory unless G is trivial. The
advantage of this new theory over mu is that the bad behavior of the Pontrjagin-
Thom map is corrected, and the maps induced by suspension by complex G-
modules are isomorphisms by construction. This should be interpreted as a
form of periodicity. Homology or cohomology theories with this property are
often referred to in the literature as complez-stable. Other examples of such
theories include equivariant complex K-theory, its associated Borel construction,
etc. Complex-stability isomorphisms should not be confused with suspension
isomorphisms of the form

=V hE(X, A) — b (B (X, 4)),
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which are part of the structure of all RO(G)-graded homology theories.

MUE or, more precisely, its dual cohomology theory was first constructed
by tom Dieck in terms of a G-prespectrum T'Ug, bearing the same relationship
to complex Grassmanians as the G-prespectrum T'O¢ discussed in XV§2, does
to real ones. An argument of Brocker and Hook for unoriented bordism read-
ily adapts to the complex case to show the equivalence of the two approaches.
In what follows, we shall focus on the spectrification MUg of TUg. As with
any representable equivariant homology theory, MUS can be extended to an
RO(G)-graded homology theory, but we shall concern ourselves only with inte-
ger gradings. We point out, however, that complex-stable theories are always
RO(G)-gradable.

A key feature of MUg, proven in XXVI§7, is the fact that it is a split G-
spectrum; this may be seen geometrically as a consequence of the fact that the
augmentation map MUS — MU,, given on representatives by neglect of struc-
ture, can be split by regarding non-equivariant stably almost complex manifolds
as G-manifolds with trivial action. The splitting makes MUS = MUSG(8°) a
module over the ring MU,.

The multiplicative structure of the ring G-spectrum MU can be interpreted
geometrically as coming from the fact that the class of normally stably almost
complex manifolds is closed under finite products. The complex-stability iso-
morphisms are well-behaved with respect to the multiplicative structure: in co-
homology, we have a commutative diagram

MU(X) ® MUL(Y) MUL(X AY)

V@V Ak Aud

MUY X) @ MUSTY I (sWY) — MUV HIW I (svew x Ay

for all based G-spaces X and Y and complex G-modules V and W. In general,
for a multiplicative cohomology theory, commutativity of a diagram of the form
above is assumed as part of the definition of complex-stability. K is another
example of a multiplicative complex-stable cohomology theory, as is the Borel
construction on any such theory.

The role of MUg in the equivariant world is analogous to that of MU in
classical homotopy theory, for its associated cohomology theory has a privileged
position among those which are multiplicative, complex-stable, and have natural
Thom classes (for complex G-vector bundles). We record the axiomatic definition
of such theories.

DEFINITION 2.2. A G-equivariant multiplicative cohomology theory hZ; is said
to have natural Thom classes for complex G-vector bundles if for every such
bundle £ of complex dimension n over a pointed G-space X there exists a class
e € hZH(T(£)), with the following three properties:

(1) Naturality: If f : Y — X is a pointed G-map, then 7¢-¢ = f*(7¢).
(2) Multiplicativity: If £ and 7 are complex G-vector bundles over X, then

Tean = T¢ X Ty € hig TT(T(€ 7).
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(3) Normalization: If V is a complex G-module, then 7 = oV (1).

The following result, which admits a quite formal proof (given for example by
Okonek) explains the universal role played by MUg.

PROPOSITION 2.3. If h is a multiplicative, complez-stable, cohomology the-
ory with natural Thom classes for complex G-bundles, then there is a unique
natural transformation MU&(—) — hg(—) of multiplicative cohomology theo-
ries that takes Thom classes to Thom classes.

Returning to homology, for a complex G-bundle £ of complex dimension £,
the Thom class of £ gives rise to a Thom isomorphism

7 : MUS(T(£)) — MUS 5, (B(£)+),

and similarly in cohomology. This isomorphism is constructed in the same way
as in the nonequivariant case (see e.g. [LMS]), without using any feature of
MUSE other than the existence and formal properties of Thom classes. However,
in this special case, its inverse has a rather pleasant geometric interpretation:
if f: M — B(£) represents an element in muS$(B(£)4+), the map f in the
pullback diagram

E(f*6) L~ E(¢)

A
M—7F B(¢)
represents an element in muS, ,, (T'(€)). This procedure allows the construction
of a homomorphism which stabilizes to the inverse of the Thom isomorphism.
See Brocker and Hook for the details of a treatment of the Thom isomorphism
(in the unoriented case) that uses this interpretation.

T. Brocker and E.C. Hook. Stable equivariant bordism. Mathematische Zeitschrift 129(1972),
pp. 269-277.

T. tom Dieck. Bordism of G-manifolds and integrality theorems. Topology 9(1970), pp. 345—
358.

C. Okonek. Der Conner-Floyd-Isomorphismus fiir Abelsche Gruppen. Mathematische Zeit-
schrift 179(1982), pp. 201-212.

3. Tangential structures

Unfortunately, both mu& and MUE are rather intractable from the compu-
tational point of view. In order to address this difficulty, we shall introduce a
new bordism theory, much more amenable to calculation, whose stabilization is
also MU

Cousider the following variant of reduced K-theory: if X is a G-space, in-
stead of taking the quotient by the subgroup generated by all trivial complex
G-bundles, take the quotient by the subgroup generated by those trivial bundles
of the form C™ x X, where G acts trivially on C*. We denote the group so
obtained as K; there is an analogous construction in the real case, which we
denote K O¢.
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DEFINITION 3.1. A tangentially stably almost complex manifold is a smooth
manifold equipped with a lift of the class [rM] € KOg(M) to Kg(M).

We shall refer to the bordism theory of these manifolds as tangential complex
bordism, denoted ayve,

We warn the reader that nowhere in the literature is the distinction between
the complex bordism theories V¢ and mu& made clear. This is not mere
pedantry on our part, as our next result will show. It was pointed out to the
author by Costenoble that this result does not hold for normally stably almost
complex G-manifolds.

PROPOSITION 3.2. If M is a tangentially stably almost complex G-manifold
and H C G is a closed normal subgroup, then the G-tubular neighborhood around
MH has a complex structure.

We stress the fact that no stabilization is necessary to get a complex structure
on the tubular neighborhood; this lies at the heart of the calculations we shall
carry out later in the chapter.

PROOF. The first thing to observe is that 7(M*) = (7 M|, )¥ as real vector
bundles. If £ is the restriction to M of a complex G-vector bundle over M that
represents its tangential stably almost complex structure, and the underlying
real G-vector bundle of £ is TM|y# @ egn, then (¢¥)L is a complex G-vector
bundle. We have

E=¢" @ (") = (tM|yn)" @ er- @ (M7, M).
This gives the desired structure. []

We next explore the relation between mul and QVC. There is a commutative
square

Kg(X)—> KOg(X)

L

Ko(X)—> KOg(X)

that yields a natural transformation of homology theories ¢ : muf —s Que,

Just as we did with muC, we may stabilize QY¢ with respect to suspensions by
finite-dimensional complex subrepresentations of a complete G-universe, obtain-
ing a new complex-stable homology theory which we shall provisionally denote
MU ,,G The map ¢ stabilizes to a natural transformation & : MU f — MUS.
The following result was first proved by the author and Costenoble by a different
argument and is central to the results of this chapter.

THEOREM 3.3. ® is an isomorphism of homology theories.

‘We shall need the following standard result.
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LEMMA 3.4. (Change of groups isomorphism) If H C G is a closed subgroup
of codimension j, then for all H-spaces X there is an isomorphism

muf! (X ) = mul,; (G xm X))

induced by application of the functor G Xy (—) to representatives of bordism

classes of maps, and similarly for pairs. The analogous result holds for Qve
and MUE.

SKETCH PROOF. If we apply the functor Gxy(—) toamap f: M — X that
represents an element of mu? (X, ), we obtain an element of mu& i ((GxpX)4).
Conversely, if g : N — G x g X represents an element of muS, (G xg X)y)
and if 7 : G xg X — X is the evident H-map, we set M = (mg)~*(eH) and
see that M is an H-manifold such that N = G xyg M and the restriction of g to
M represents an element of muZ (X.). O

PROOF OF THEOREM 3.3. We show first that the theorem is true for G =
SU(2k+ 1) and then extend the result to the general case by a change of groups
argument.

We recall a few standard facts about representations of special unitary groups
(e.g., from Brocker and tom Dieck). Let M be the complex SU(2k + 1)-module
such that M = C**! with the action of SU(2k + 1) given by matrix multipli-
cation and let A* = A‘M. Then R(SU(2k + 1)) is the polynomial algebra over
Z on the representations A%, 1 < 4 < 2k, all of which are irreducible and of com-
plex type. Furthermore, A2*~*t1 = Ai¢, This implies that any irreducible real
representation of SU(2k + 1) is either trivial or admits a complex structure. To
see this, let W be a non-trivial irreducible real SU(2k+1)-module. Suppose first
that W @g C is irreducible. Since the restriction to R of an irreducible complex
representation of quaternionic type is irreducible, our assumptions imply that
W ®g C is of real type and of the form V ®@¢ V, where V is a monomial in the
A, 1< i< k. We have

(VecV)®rC=(2W)®r C = 2(VecV)

as complex representations. On the other hand, since 2W = V ®c V, we have
isomorphisms of complex SU(2k + 1)-modules

CW)erC2 (VeacV)®rC2V & (VerC)

and
Vec(VerC) X (VecV)d (VecV)
(because V@r C =V & V). So it follows that

2VecV)=2(VeacV)d (VeeV),

which is absurd in view of the structure of RSU(2k + 1). Thus W must be
reducible and so it is either of the form Vi @ Vi, for an irreducible complex V;
of quaternionic type, or V; @ V3, for an irreducible complex V; of complex type.
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The first possibility is ruled out by the fact that all self-conjugate irreducible
complex representations of SU(2k + 1) are of real type. So we must have

W2V, eV, =2V

as real representations, and therefore, using the uniqueness of isotypical decom-
positions, we may conclude that W & V as real representations.

Now let X be a SU(2k+ 1)-space and consider a map representing an element
in MUS(X). By complex-stability, there is no loss of generality in assuming
that our map is of the form f : M — X, where TM @ ey = £, V is a real
representation, and £ is a complex SU(2k + 1)-vector bundle. By the remark
above, V = W @ R for a complex representation W. Then W (M,0M) is a
tangentially stably almost complex manifold and the class of W f is in the image
of ¢. It follows that @ is surjective. A similar argument applied to bordisms
shows that @ is injective.

To obtain the general case, observe that any compact Lie group embeds in
U(2k), and U(2k) embeds in SU(2k + 1) (via the map that sends A € U(2k) to
(det A)~1.1xr ® A), and apply Lemma 3.4. 0O

T. Brocker and T. tom Dieck. representations of compact Lie groups. Springer. 1985.
C. Okonek. Der Conner-Floyd-Isomorphismus fiir Abelsche Gruppen. Mathematische Zeit-
schrift 179(1982), pp. 201-212.

4, Calculational tools

For the remainder of the chapter, all Lie groups we consider will be Abelian.

There is a long list of names associated to the calculation of Y% (S°) for dif-
ferent classes of compact Lie groups: Landweber (cyclic groups), Stong (Abelian
p-groups), Ossa (finite Abelian groups), Lofller (Abelian groups), Lazarov (groups
of order pq for distinct primes p and ¢), and Rowlett (extensions of a cyclic group
by a cyclic group of relatively prime order). All of these authors rely on the
study of fixed point sets by various subgroups, together with their normal bun-
dles, through the use of bordism theories with suitable restrictions on isotropy
subgroups.

The main calculational tool is the use of families of subgroups, which works
in exactly the same fashion as was discussed in the real case in XV§3. Recall
that, for a family &, an F-space is a G-space all of whose isotropy subgroups
are in & and that we write E& for the universal #-space. Recall too that, for
a G-homology theory A and a pair of families (&, £'), &' C &, there is an
associated homology theory hG[Z#, #'], defined on pairs of G-spaces as

RCIZ, F(X,A) = hG(X x EZ,(X x F')U (A x EZ)).

When £’ = 0, we use the notation hG[F]. The theories hG[F], hG[F’], and
hC[#,#'] fit into a long exact sequence. Of course, there is an analogous con-
struction in cohomology.

In the special case of Qve (and similarly for other bordism theories), it is
easy to see that 0Y°°[#, #'] has an alternative interpretation: it is the bor-
dism theory of (&,.#’)- tangentially almost-complex manifolds, that is, com-
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pact, tangentially almost complex .#-manifolds with boundary, whose boundary
is an #’-manifold.

DEFINITION 4.1. A pair of families (%, #') of subgroups of G is called a
neighboring pair differing by H if there is a subgroup H such that if K € & —%",
then H is a subconjugate of K.

This notion was first used by Lofler, but the terminology is not standard. A
special case is the more usual notion of an adjacent pair of families pair differing
by H, which is a neighboring pair (&, #’) such that & — &' consists of those
subgroups conjugate to H.

The next proposition explains the importance of neighboring families. We
introduce some terminology and notation to facilitate its discussion.

Given a subgroup H of an Abelian Lie group G, we choose a set €, g of finite
dimensional complex G-modules whose restrictions to H form a non-redundant,
complete set of irreducible, nontrivial complex H-modules. If C denotes the
trivial irreducible representation, we let ¥ ; = €¢ » U{C}. For a nonnegative
even integer k, we shall call an array of noﬁnegative integers P = (pv)vess y &

(G, H)-partition of k if
k= Z 2pv.

VE¥éc,n
For such a partition P, we let

BUP,G)= [] BU®v,G).
Vebe,u

We let Z(k, G, H) denote the set of all (G, H)-partitions of k.

PROPOSITION 4.2. If (¥, %) is a neighboring pair of families of subgroups
of a compact Abelian Lie group G differing by a subgroup H, then

olCl7, X, @ S IF/H(XY,A) x BU(P,G/H)),
0<2k<n
PeP(2k,G,H)
where & [H denotes the family of subgroups of G/H that is obtained by taking
the quotient of each element of & — %' by H.

SKETCH OF PROOF. For simplicity, we concentrate on the absolute case. Let
f: M — X represent an element in QY'C[#, #'|(X,) and let T be a (closed)
G-tubular neighborhood of M. We may view T as the total space of the
unit disc bundle of the normal bundle to MH. We may also view T as an n-
dimensional .#-manifold whose boundary is an %#’-manifold. Thus T represents
an element of QY'C[F, #'|(5°), and we see that [f] = [f|r] in QUC[£, F/)(X,).
Furthermore, [f] = 0 if and only if there is an H-trivial G-nullbordism of f|r,
equipped with a complex G-vector bundle whose unit disc bundle restricts to T
on M# . Observe that M breaks up into various components of constant even
codimension. In other words, QV'¢[£#, £'|(X4) can be identified with the direct
sum, with 2k ranging between 0 and n, of bordism of H-trivial #-manifolds
of dimension n — 2k equipped with a complex G-vector bundle of dimension k,
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containing no H-trivial summands. Note the twofold importance of Proposition
3.2: not only are we using that M¥ is tangentially almost complex, but also
that its tubular neighborhood carries a complex structure.

Consider the bundle-theoretic analog of the isotypical decomposition of a lin-
ear representation. For complex G-vector bundles E and F over a space X
we may construct the vector bundle Hom ¢(E, F) whose fiber over z € X is
Home(Ez, Fr); G acts on Homg (E, F) by conjugation. If X is H-trivial, then
Hompy (E, F) = (Hom¢(E, F))H is an H-trivial G-subbundle; if one regards X
as a (G/H)-space, then Hompy (E, F') becomes a (G/H)-vector bundle over X.

We apply this to F =T and E = ey, where V is a complex G-module whose
restriction to H is irreducible, thus obtaining a (G/H)-vector bundle which we
call the V-maultiplicity of E. The evaluation map

@ Hompg(ev,T) Qcey — T
veel 4

is a G-vector bundle isomorphism, and this decomposition into isotypical sum-
mands is unique. Note that in the special case we are considering, the multiplicity
associated to the trivial representation is 0, so the sum really does run over 65 1.

Therefore T can be identified with a direct sum of (G/H)-vector bundles
over M¥ each corresponding to an irreducible complex representation of H,
and M¥ breaks into a disjoint union of components on which the dimension
of each multiplicity remains constant; each of these components therefore has
an associated (G, H)-partition, accounting for the summation over (2, G, H)
in our formula. Clearly the bundle on the component associated to a (G, H)-
partition P is classified by BU(P,G/H). O

Similar methods allow us to prove the following standard result.

PROPOSITION 4.3. With the notation above, if H is a subgroup of an Abelian
Lie group G, then

BUMmG) = ]I Il BUG®v.G/H)
Pe#(n,G,H) Veffg‘ﬂ

as H-trivial G-spaces.

PRrOOF. It suffices to observe that the right hand side classifies n-dimensional
complex G-vector bundles over H-trivial G-spaces. [

P. S. Landweber. Unitary bordism of cyclic group actions. Proceedings of the Amer. Math.
Soc. 31(1972), pp. 564-570.

C. Lazarov. Actions of groups of order pq. Transactions of the Amer. Math. Soc. 173(1972),
pp. 215-230.

P. Lsffler. Bordismengruppen unitérer Torusmannigfaltigkeiten. Manuscripta Mathematica
12(1974), 307-327.

E. Ossa, Unitary bordism of Abelian groups. Proceedings of the American Mathematical
Society 33(1972), pp. 568-571.

R.J. Rowlett. Bordism of metacyclic group actions. Michigan Mathematical Journal 27(1980),
pp. 223-233.
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R. Stong. Complex and oriented equivariant bordism. in Topology of Manifolds (J.C. Cantrell
and C.H. Edwards, editors). Markham, Chicago 1970.

5. Statements of the main results

We come now to a series of theorems, some old, some new, that are conse-
quences of the previous results. In all of them, we consider a given compact
Abelian Lie group G.

THEOREM 5.1 (LOFFLER). If V is a complez G-module, and X is a disjoint
unzon of pairs of G-spaces of the form

k
(DV,8V) x [[ BU(n:, G),

=1
then Q*U’G(X ) is a free MU, -module concentrated in even degrees.
THEOREM 5.2. With the same hypotheses on X, the map
QY (BU(n,G) x X) — QVC(BU(n+1,G) x X)

induced by Whitney sum with the trivial bundle ec is a split monomorphism of
MU, -modules.

THEOREM 5.3. MU is a free MU,-module concentrated in even degrees.

THEOREM 5.4. The stabilization map Qe M UE is a split monomor-
phism of MU, -modules.

Theorem 5.3 is stated in the second paper of Loffler cited below, but there
seems to be no proof in the literature. Ours is a refinement of the ideas in
the proof of Theorem 5.1, which yields Theorem 5.4 as a by-product, and is
entirely self-contained (that is, it does not depend on results on finite Abelian
groups). Tom Dieck has used a completely different method to prove a weaker
version of Theorem 5.4, for G cyclic of prime order, but to the best of our
knowledge nothing of the sort has previously been claimed or proved at our level
of generality. Theorem 5.2, which also seems to be new, is required in the course
of the proof of Theorem 5.3 and is of independent interest.

In the light of these results, it is natural to conjecture, probably overopti-
mistically, that MUC is free over MU, and concentrated in even degrees for
any compact Lie group G. We have succeeded in verifying this for a class of
non-Abelian groups that includes O(2) and the dihedral groups. The statement
about the injectivity of the stabilization map also holds for these groups. We
hope to extend these results to other classes of non-Abelian groups; details will
appear elsewhere.

The results above should be proven in the given order, but, since the proofs
have a large overlap, we shall deal with all of them simultaneously.

We shall proceed by induction on the number of “cyclic factors” of the group,
where, for the purposes of this discussion, S! counts as a cyclic group. The
argument in each case is as follows: the result is either trivial or well-known for
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the trivial group. Then, one shows that if the result is true for a compact Lie
group G, it also holds for G x S!, and this in turn implies the same for G x Z,.

T. tom Dieck. Bordism of G-manifolds and integrality theorems. Topology 9(1970), pp. 345-
358.

P. Lofler. Bordismengruppen unitérer Torusmannigfaltigkeiten. Manuscripta Mathematica
12(1974), 307-327.

P. Lofler. Equivariant unitary bordism and classifying spaces. Proceedings of the International
Symposium on Topology and its Applications, Budva, Yugoslavia 1973, pp. 158-160.

6. Preliminary lemmas and families in G x S!

For brevity, the subgroups {1} x §! C G x S and {1} x Z,, C G x Z,, will be
denoted S* and Z,, respectively.
We shall need to consider the following families of subgroups of G x S':

&, = {HCGxS'||HNSY <i}
Fo = {HCGxS'|HNS £59
& = {all closed subgroups of G x S'}

These give rise to the neighboring pairs (&1, %;) (differing by Z;;,) and
(o, Fo) (differing by S*). Observe that F is the union of its subfamilies %;.

LEMMA 6.1. Let G be a compact Lie group and X be a pair of (Gx S*)-spaces.
Then

QUexS’ (x x §1y = a4 (x)
and
QIO (X x 81)/Zq) 2= QLT (X),
where G x St acts on S' and S'/Z,, through the projection G x S* — S*; the
same statement holds for the theories mul*S" and MUS*S’

The proofs of these isomorphisms are easy verifications and will be omitted;
see Loffler. We shall also need the following result of Conner and Smith.

LEMMA 6.2. A graded, projective, bounded below MU, -module is free.

LEMMA 6.3. Consider a diagram of projective modules with exact rows

0 A B C 0
fll/ le fal
0 A’ >~ B’ > 0.

If fi and f3 (resp. fo and fs) are split monomorphisms, so is fo (resp. f1).

PRrROOF. Add a third row consisting of the cokernels of the f;, which will be
exact by the Snake Lemma. An easy diagram chase shows that the modules in
the new row are projective, and therefore the conclusion follows. [

Note that we make no assumptions about compatibility of the splittings.



344 XXVIII. CALCULATIONS IN COMPLEX EQUIVARIANT BORDISM

REMARK 6.4. If X is a pair of G-spaces of the kind appearing in the statement
of Theorem 5.1 and H is a subgroup of G, then restricting the action to H yields
an H-pair of the same kind. Moreover, by Proposition 4.3, X is a (G/H)-pair
of the same type. This class of pairs of spaces is also closed under cartesian
product with BU(n,G) and with pairs of the form (DW,SW) for a complex
G-module W.

P. E. Conner, L. Smith, On the compler bordism of finite complezes, Publications Mathéma-
tiques de I'THES, no. 37 (1969), pp. 417-521.

P. Loffler. Bordismengruppen unitdrer Torusmannigfaltigkeiten. Manuscripta Mathematica
12(1974), 307-327.

7. On the families .%; in G x S?

In what follows, for a G-pair X and a homology theory h., ¥ will designate a
map of the form

¢ : h(BU(n,G) x X) — h.(BU(n+1,G) x X)

that is induced by taking the Whitney sum of the universal complex G-bundle
over BU(n,G) and the trivial G-bundle ec.

Suppose that Theorems 5.1 — 5.4 have been proved for G. We shall deduce
the following result in the case G x S.

THEOREM 7.1. The following statements hold for each i > 1 and for i = oco.

(1) QUexs? [Zi)(X) is a free MU,-module concentrated in odd degrees.
(2) The map

P : QUCXS [ Z)(BU(n, G x §Y) x X) — QVC*S [£)(BU(n +1,G x §*) x X)
is a split monomorphism of MU, -modules.
(3) If W is an irreducible complex (G x S')-module, then the map
0¥ QYOS (Z)(X) — LG T 1F)(DW, 5W) x X)
s a split monomorphism of MU, -modules.
(4) The map QUE*5 [Z(X) — QU:exs? (X) s zero.

PRrROOF. We first prove this for ¢ = 1, making use of a suitable model for the
space EZ#1. Let (W;);>1 be a sequence of irreducible complex (G x S*)-modules
such that S acts freely on their unit circles, and every isomorphism class of such
(G x S8*)-modules appears infinitely many times. Let V}, = @k W; and

1=1
SVOO = COlimkSVk;

SV is the required space. Note also that this space embeds into the equivari-
antly contractible space

DVOO = COlimkDVk .

Using Lemma 6.1 and our assumptions about G, we see that QY G5 (SV1xX)
is a free MU,-module concentrated in odd degrees, and that

oV QUGS (91, x X) — QUCXS' ((DW, SW) x SV; x X)
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and
QUE*SY(8V; x BU(n, G x §1) x X) —» QUS> (§V4 x BU(n+1,G x S) x X)
are split monomorphisms of MU,-modules.
We calculate Q*U’stl ((5Vk+1,SVk) x X) using the homotopy equivalence
(SVis1,SVi) = (SWit1 * SVi, DWii1 x SVi),
and the excisive inclusion
SWii1 X (DVi, SVi) — (SWit1 % SVi, DWiy1 x SVi).

The action of G x S* on SWi; determines and is determined by a split group
epimorphism G x S! — S! with kernel H C G x §', H = G. This implies
that SWy 41 is (G x §')-homeomorphic to (G x S')/H. By a change of groups
argument and the inductive hypothesis, we see that Q'Y ((SViyy, SVi) x X) is
free and concentrated in odd degrees and that the maps induced respectively by
suspension by an irreducible complex G-module and by addition of the bundle
ec are split monomorphisms of MU,-modules.
The diagram with exact columns (in which j is odd)

0 0

QUC*SH 8V, x X) ———F——> QUS*S ((DW, SW) x SV; x X)
QUEXS (§Vpyy x X) ——Z— QUCS' (DW, SW) x SViy1 x X)

QU (SViy1, SVR) x X) —Z> QUGS (DW, SW) X (SVis1, Vi) x X)

0 0

and the results above show by induction that, for all k > 1, Quexs ' (SVk x X)
is free and concentrated in odd degrees and that ¢% is a split monomorphism.
An analogous diagram shows the same is true for the map v induced by adding
EC.

To complete the proofs of (1) — (3) when ¢ = 1, it suffices to observe that
each step in the colimit contributes a direct summand to SV.,. To prove (4),

let f: M — X x SV, represent an element of Quexst [#1](X). Since S? acts
freely on M and all actions on a circle are linear, p : M — M/S? is the unit
circle bundle of a 1-dimensional complex G-bundle E (the complex structure is
given by multiplication by ¢ € §'). Obviously, the circle bundle bounds a disc
bundle, whose total space is a complex (G x S!)-manifold W. Any point z € W
can be written as ty, where t € [0,1] and y € M, so f extends to an equivariant
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map F : W — X X DV, defined as F(ty) = tf(y), where the multiplication
on the right hand side is given by the linear structure of DV .

‘We prove the case 72 > 1 of Theorem 7.1 by induction on . Observe first that
the case 7 = oo will follow directly from the case of finite ¢ since

EZ . = colm; E%;.

Indeed, we shall see that each stage in the construction of E&, as a colimit
contributes a free direct summand to Q¥6*5’ [Foo)(X) on which % and 9 are
split monomorphisms of MU,-modules and the map to QU.GxS ' (X) is zero.

Applying Proposition 4.2 with (G, H) replaced by (G x §',Z;+1) and noting
that (G x §')/Z;y1 = G x S! and that, under this isomorphism, the family
Fi+1/Zi+1 corresponds to the family %, we find that

WO F, ) D G X <BU(P,GXSY).
0<2k<n
PeP(2k,GXS8* Zpt1)

Thus the case i = 1, combined with Remark 6.4, shows that the left-hand side
is free and concentrated in odd degrees.

One then concludes, by using the long exact sequences of the pairs [Fi1, Zi),
that for all 4, O Gxs? [Z:](X) is concentrated in odd degrees.

The diagrams with exact columns (in which j is odd)

0 0

|

Q) C1F)(BU(n, G x §1) x X) —= QY9 [#)(BU(n +1,G x §1) x X)

L

OV C[Zi1](BU(n, G x 8Y) x X) —> QVC[F:1](BU(n +1,G x §') x X)

|

Q) C[Fir1, F)(BU(n,G x §1) x Xp Q) C[Fi41, Fi)(BU(n +1,G x §1) x X)

|

0 0

show that, for all 1, 990[9?,] (X) is a free MU,-module and the map induced by
addition of ec is a split monomorphism of MU,-modules.

The study of the suspension map ¢ must be broken into two cases. Since
W is an irreducible representation of G x S, its fixed point space WS is either
W or {0} and therefore either

(1) W&+t = W or
(2) Wi+ = {0}.
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In the first case, the map
1 3 1
(72)0" : QRSFS [Fir, Fl(X) — QGES [Firr, F)(DW, SW) x X),
can be regarded via Proposition 4.2 as a direct sum of suspension maps
G5 (#NY) — GG (#)(OW, SW) x V),

where Y = X%+t x BU(P, G x 8*) for some partition P of 2(j —I) and we think

of W as a representation of G x (S§'/Z;y;) & G x §. Thus it follows from the

case 1 = 1 that (7.2) is a split monomorphism of MU,-modules in this case.
For the second case consider a (G x S, Z1)-partition P = (pv)ves,, _—

of an even integer k. Let P’ = (p},)ves,, -, denote the (G x §%, Z;1)-partition
of k + 2 defined by

V= ey otherwise.

Since WZ%+1 = {0}, Proposition 4.2 implies that the map (7.2) can be interpreted
as a direct sum of maps of the form

¥ : QGEXS [ #)(X%+ x BU(P,G)) — Q555 1#1)(X%+ x BU(P',G))

induced by addition of e¢ to the multiplicity bundle corresponding to the V' in
the decomposition. We know already that maps of this kind are split monomor-
phisms of MU,-modules, and we conclude that (7.2) is always a split monomor-
phism of MU,-modules.

Now the following diagram with exact columns implies inductively that, for

all i, 0¥ is a split monomorphism of MU,-modules on QY¢*5 ' [ZF(X).

0 0

/

1 O‘W 1
Q53 S [FNX) — 5557 [FN(DW, SW) x X)
1 UW 1
055 [Fipr)(X) ——J G55 [ #.](DW, SW) x X)

1 ,W 1
QSIS [ Fipn, FNX) —> Q5555 [ Figr, F)(DW, SW) x X)

4
0 0

Finally, to prove (4) of Theorem 7.1, let f : M — X represent an element of
Q?’GXsl [#:](X), i > 1, and suppose that we have already proved that

QU [2](X) — QP (X)
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is zero for all j < ¢. We shall construct a bordism with no isotropy restrictions
from f to a map f' : M’ — X where M’ is an .#;_;-manifold. By the induction
hypothesis, this will complete the proof.

Let us pause for a moment to explain informally how the bordism will be
constructed. The idea is based on a standard technique in geometric topology
known as “attaching handles”. Any sphere S* is the boundary of a disc D**!;
if S ¢ N™ is embedded with trivial normal bundle in a manifold N and has a
tubular neighborhood T, we can obtain a bordism of N to a new manifold by
crossing N with the unit interval and pasting D*+1 x D*~*~1 (a handle with
core D¥) to N x I by identifying T x {1} with S*¥ x D"~*=1. Qur construction
will be basically “attaching a generalized handle” to our manifold M. Instead of
an embedded sphere, we shall use M%, which bounds a manifold W'; this will be
the “core” of our “handle”. The “handle” itself will be the total space of a disc
bundle over W. The total space of its restriction to M% will be equivariantly
diffeomorphic to a tubular neighborhood of M% in M, so we may take M x I
and glue the “handle” in the obvious way, thus obtaining the desired bordism.
Of course, all the required properties of the bordism have to be checked, and an
extension of f to the bordism has to be constructed. We give the details next.

Consider a tubular neighborhood T of M%:, regarded as the total space of a
disc bundle over MZ%:. We shall use the notation ST for the corresponding unit
circle bundle, and T° for T — ST. We remark that M — T° and ST are %;_;-
manifolds. When there is no danger of confusion, we shall make no notational
distinction between a bundle and its total space.

Let A denote a generator of Z; C S* C C, and let V}, 0 < k& < 4, be 1-
dimensional representations of Z; such that X acts by multiplication by A*. These
form a complete, non-redundant set of nontrivial irreducible representations, and
each of the Vs obviously extends to G x S! (an element (g,s) € G x S! acts by
multiplication by s*). We use these to obtain an isotypical decomposition of T'.
Let T denote the bundle Homg, (ev, , T').

Since M?%: is (S /Z;)-free, our proof in the case i = 1 shows that f|,,z, bounds
amap f: W — X, where W is the total space of a Z;-trivial 1-dimensional
(G x 8')-disc bundle over Z = M% /(S /Z;) whose unit circle bundle is M%:,

Passage to orbits gives a pull-back diagram

Tk —éTk/(SI/Z,)

|

N—>N/(§'/Zy),

for each k, where the right vertical arrow is a G-disc bundle, which may also be
thought of as a (G x (5*/Z;))-bundle with trivial (§*/Z;)-action. This makes
the diagram above a pull-back of (G x (S?/Z;))-vector bundles. Since the zero-
section of this bundle can be identified with Z = SW/(S?/Z,), we have a diagram
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of (G x (§'/Z;))-bundles

Tk T/ (S /Z:)
\
p*(T/(S1/Z4))
N J N/(SY/2y).

Clearly the bundle 7' = @B, p* (Tx/(S'/Z;)) ®ev, extends T to W; we claim that
its unit sphere bundle is an %#;_;-manifold. To prove this, observe that

W —Z =M% x|0,1),

where [0,1) has trivial action, and so ST!W§ z is equivariantly homeomorphic
to ST|w -z x [0,1). Therefore, Sl-s:cabilizers of points in ST — ST not already
present in ST can only appear in ST'|z, but since there is no component associ-
ated to the trivial representation (recall our remark in the course of the proof of
Proposition 4.2) all these are proper subgroups of Z;, so the claim follows.
Let
M’ = (M — T°) Ugr ST;

by construction, this is an %;_;-manifold. Since TUW is a (G x S')-deformation
retract of T', there is a map f : W — X with f|T = f|r and f|W = f. We
obtain a bordism by crossing M with the closed unit interval, pasting 7' to
M x {1} along T x {1}, and extending f in the obvious way to a map F' from
the bordism into X. The maps f’ = F|p and f represent the same element in
the bordism of X with no isotropy restrictions, as required. O

8. Passing from G to G x S and G x Z;

To complete the proofs of our theorems, it suffices to prove the following
result, in which we again assume that we have proven Theorems 5.1 — 5.4 for G.

THEOREM 8.1. Let C = S or C = Zj. The following statements hold.

(1) QVC*C(X) is a free MU,-module concentrated in even degrees.
(2) The map

¥ QUCXC(BU(n,G x 8%) x X) — QVC*C(BU(n +1,G x §') x X)

is a split monomorphism of MU, -modules.
(8) If W 1s an irreducible complex (G x C)-module, then

oW QUEXC(X) — QTGO ((DW, SW) x X)

is a split monomorphism of MU, -modules.
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We first show that QU6 %5’ (o, Fo)(X) is a free MU,-module concentrated in
even degrees and that o% and 1 here are split monomorphisms of MU,-modules.
By Proposition 4.2, we have

Qg,GxS‘ (o, Foo)(X) = @ Qﬂ:_c’;k(xsl x BU(P,G)).
0<2k<n
PedP(2k,Gx8*,81)

Thus, by the induction hypothesis, QU:¢*5" [, £..)(X) is free over MU, and
concentrated in even degrees, and the maps 7 induced by addition of e¢ are split
monomorphisms of MU,-modules.

Theorem 7.1(4) implies that the long exact sequence of the pair (&, Fuo)
breaks into short exact sequences. In particular, the map

QE‘/,GXS1 (X) - QE‘I,GX,S’1 [.27, 300](X)

is a monomorphism, hence Qy’stl (X) is concentrated in even degrees.
In order to study the effect of oW on QU:C*S’ (o7, & ](X), it is necessary to
distinguish two cases:
(1) W5 =W and
(2) wS' = {0}.
The analysis is similar to the one carried out in the previous section and will
be omitted; it yields the expected conclusion: ¢ is a split monomorphism of
MU,-modules on QY'G*5* (o7, ,.](X).
The diagram with exact columns

1) T
1 UW
Qg% (X) - QUCx5 (DW, SW) x X)
1 1 w J
QY% (a7, Foo|(X) ——2—— QUGS [of, Zoc) (DW, SW) x X)
QT (X : 075 (ol (DW, SW) x X)
0 0

together with Lemmas 6.2 and 6.3 shows that QU Gx8! (X) is projective, and
therefore free, and o" is a split monomorphism of MU,-modules on Q*U’stl (X).
A similar diagram gives the corresponding conclusion for 1.

This completes the proof of Theorem 8.1 for C = S, and it remains to deal
with the case C = Zi. Let V' denote the 1-dimensional complex representation of
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G x 8! on which G acts trivially and an element €2 ¢ S acts by multiplication
by €27tk Since S! acts without fixed points on SV x X,

QUGS [, o )(SV x X) = 0.
Therefore, by the long exact sequence of the pair (DV, SV),
QLS o, F)(X) — QPO E (o, F](DV, SV) x X)
is an isomorphism, and, by the long exact sequence of the pair (&, #),
QUEXS' L Z(SV x X) — QUC*S" (5V x X)

is an isomorphism.

By Theorem 7.1, we conclude that QUexs’ (SV x X) is a free MU,-module
concentrated in odd degrees. This being so, the long exact sequence of the pair
(DV, 8V) breaks up into short exact sequences

0 — QU (X) < QUEXS" (DV, SV) x X) — QUS55 (SV x X) — 0.
Since SV can be identified with §*/Zy, we conclude from Lemma 3.4 that
QU:G*Zk(X) = coker a.

Now apply the Snake Lemma to the diagram with exact columns

0 0
Q5o (X) s US*S (DV,5V) x X)
Q50 [t P (X) % US|, Z.,)(DV, SV) x X)
Q705 [Foo)(X) 2 QUExS 2, ((DV, SV) x X)

0 0.

Since o is a monomorphism and S is an epimorphism, we see that coker a =
ker (3. Since ker 3 is a free MU,-module concentrated in odd degrees, QUG *Zx (X)
is free and concentrated in even degrees.
To show that % is a split monomorphism, let Y = (DW,SW) x X and
consider the maps
o QUCXS (v) — Y55 ((DV, 5V) x Y)

and
1 1
B Q05 [Fol(Y) — QTS [Fol(DV, SV) x Y)
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that fit into the diagram obtained from the previous one by raising all degrees by
two and replacing X by Y. Then % induces a map from the original diagram
to the new diagram, and there results a commutative square

¢7,W
coker o —> coker o

gi =

ker ﬂ——o—wéker g

By Lemma 6.2, the bottom arrow is a split monomorphism of MU,-modules,
hence so is the top arrow. The proof that % is a split monomorphism is similar.
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