Corrections and comments for: Linear Algebra in Action, 2nd edition.
May 4, 2018
p.221, line 1 of Section 10.4: $\left[\begin{array}{ll}a, & b_{j}\end{array}\right]^{T}$ to $\left[\begin{array}{ll}a_{j} & b_{j}\end{array}\right]^{T}$
p.233, line 3 of Exercise 10.27 should read:

$$
\max \left\{|\operatorname{trace}(U A V B)|: U, V \in \mathbb{C}^{n \times n} \quad \text { and } \quad U^{H} U=V^{H} V=I_{n}\right\}=\sum_{j=1}^{n} \alpha_{j} \beta_{j}
$$

p.233, (1) of Theorem 10.17: $\leq \operatorname{rank} A$. to $=1, \ldots, n$.
p.235, line 1 of proof of Lemma 10.19: $\left(I_{p}-A A^{H}\right)^{1 / 2} \quad$ to $\quad D_{A^{H}}=\left(I_{p}-A A^{H}\right)^{1 / 2}$.
p.255, At the end of the warning (after the sentence However, A is clearly not Hermitian.) add: But, if $A \in \mathbb{R}^{n \times n}$, then
$\langle A \mathbf{x}, \mathbf{x}\rangle \geq 0 \quad$ for every $\mathbf{x} \in \mathbb{C}^{n} \Longleftrightarrow\langle A \mathbf{x}, \mathbf{x}\rangle \geq 0 \quad$ for every $\mathbf{x} \in \mathbb{R}^{n}$ and $A=A^{T}$.
p.258, line 4 of Lemma 12.6: positive definite and to positive definite, X is invertible and
p.289, line 2 above 5.: $\left(\gamma^{2} I_{q}-A^{H} A\right)^{1 / 2} \quad$ to $\quad\left(\gamma^{2} I_{p}-A A^{H}\right)^{1 / 2} \quad$ (This change should be implemented twice.)

Also, to verify Step 4, it is helpful to note that if $\operatorname{rank}\left(\gamma^{2} I_{q}-A^{H} A\right)=r$, with $1 \leq r<q$, then there exists a $q \times q$ unitary matrix $V=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right]$ such that $V_{1} \in \mathbb{C}^{q \times r}$, S is invertible, $\left(\gamma^{2} I_{q}-A^{H} A\right)=V_{1} S V_{1}^{H}$ and (because of (12.87)) $C V_{2}=0$.
p.324, Theorem 14.10: The bound in (4) may be obtained by strengthening the bound in (3) to:

$$
\left\|J_{\mathbf{f}}(\mathbf{x})-J_{\mathbf{f}}(\mathbf{x}+s(\mathbf{b}-\mathbf{x}))\right\| \leq \alpha s\|\mathbf{b}-\mathbf{x}\| \quad \text { for } 0 \leq s \leq 1
$$

with α as in the present proof of (3).
p.325, line 3 of the proof: c_{j} to $c_{i j}$
p.326, line 4 up: $\left\|\left[\begin{array}{ll}2 & 2 \\ 2 & 0\end{array}\right](\mathbf{x}-\mathbf{y})\right\|$ to $\left\|\left[\begin{array}{ll}2 & 2 \\ 2 & 0\end{array}\right]\left[\begin{array}{cc}x_{1}-y_{1} & 0 \\ 0 & x_{2}-y_{2}\end{array}\right]\right\|$
p.331, line 2 up: r_{A+B} to $r_{\sigma}(A+B)$
p.335, line 1 of Exercise 14.23: a_{J+1} to a_{j+1}
p.393, in Figure 1: The exterior curve should have been labelled Γ.
p.448, to get a better feel for the tail end of the proof of Theorem 19.9, it may be helpful to note that if $A=B C$, then $\operatorname{rank} A \leq \operatorname{rank} B$. However, if $C C^{H}$ is invertible, then $B=A C^{H}\left(C C^{H}\right)^{-1}$ and hence $\operatorname{rank} B \leq \operatorname{rank} A$.
p.471, line 1, unitary to invertible
p.471, line 6: $Q=U C V^{H}$ to $\quad Q=U C V^{-1}$
p.485, in the setting of Theorem 20.18 it is useful to note that if (A.b) is controllable and $A=U J U^{-1}$ with J in Jordan form, then

$$
\operatorname{rank}\left[\begin{array}{ll}
\lambda I_{n}-A & \mathbf{b}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
\lambda I_{n}-J & U^{-1} \mathbf{b}
\end{array}\right]=n \quad \text { for every } \lambda \in \mathbb{C} .
$$

Therefore, the geometric multiplicity of each eigenvalue of A is equal to one.
p.511, in (22.6) delete: on Q
p. 543, line 14 up: $\mathbf{u w}^{T}=\mathbf{y v}^{T}$ to $\mathbf{w}^{T} \mathbf{u}=\mathbf{v}^{T} \mathbf{y}$.
p.550, line 1: unitary to Hermitian

