1172-49-27 Ihsan Topaloglu* (iatopaloglu@vcu.edu). Least Wasserstein distance between disjoint shapes with perimeter regularization.
In this talk I will consider a minimization problem related to a simplified model for lipid bilayer membranes. Representing the densities of the hydrophobic tails and hydrophilic heads of the two part lipid molecules by sets E and F, respectively, the minimization problem is given by

$$
\inf \left\{P(E)+\lambda W_{p}(E, F): E, F \subset \mathbb{R}^{n},|E \cap F|=0,|E|=|F|=1\right\}
$$

Here $P(E)$ denotes the perimeter of E, W_{p} denotes the p-Wasserstein distance on the space of probability measures, and $\lambda>0$ is a constant. Answering a conjecture by Buttazzo, Carlier and Laborde, I will show that minimizers exist in any dimension and for all values of $\lambda>0$ and $p \in[1, \infty)$. This is a joint work with Michael Novack and Raghavendra Venkatraman. (Received August 06, 2021)

