1172-42-84 **Daniel Eceizabarrena*** (eceizabarrena@math.umass.edu), Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, and Felipe Ponce-Vanegas. Pointwise convergence over fractals for dispersive equations with homogeneous symbol.

Let $P \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$ be a real, homogeneous and non-singular symbol and the dispersive equation

$$i \partial_t u + P(D)u = 0, \qquad u(x,0) = f(x).$$
(1)

For $\alpha \in [0, n]$, we tackle the α -almost everywhere convergence problem; that is, for which s > 0 do we have

$$\lim_{t \to 0} u(x,t) = f(x), \qquad \alpha \text{-a.e.} \qquad \forall f \in H^s(\mathbb{R}^n) \quad ?$$
(2)

We prove that:

- For general P, convergence holds if $s > (n \alpha + 1)/2$.
- This is optimal: there are $\alpha \leq n$ and saddle-like symbols with counterexamples with $s < (n \alpha + 1)/2$.
- If P has dispersion and $\alpha < n/2$, then $s > (n \alpha)/2$, and this is optimal.
- If $P(\xi) = \xi_1^k + \ldots + \xi_n^k$, $k \ge 2$ an integer and $\alpha < n$, we give counterexamples. This is a generalization of the recent work by An, Chu, Pierce for $\alpha = n$. Main difficulties are dealing with Weil sums and computing the Hausdorff dimension of the divergence sets. For the latter we use a mass transference principle from Diophantine approximation.

This is a joint work with Felipe Ponce-Vanegas (BCAM, Spain). (Received August 18, 2021)