1172-41-45 Gökalp Alpan* (gokalp.alpan@math.uu.se), Uppsala University, Sweden. Extremal polynomials on a Jordan arc.
Let Γ be a C^{2+} Jordan arc, ρ be a weight function which satisfies the Szegő condition and μ be a finite Borel measure in the Szegő class $\mathrm{Sz}(\Gamma)$. We discuss upper and lower bounds for

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left\|P_{n}\right\|_{L_{2}(\mu)}}{\operatorname{Cap}(\Gamma)^{n}} \tag{1}
\end{equation*}
$$

where P_{n} is the n-th monic orthogonal polynomial for μ.
Let T_{n} be the n-th weighted Chebyshev polynomial with respect to ρ. Widom (1969), gave an upper bound for the quantity

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left\|\rho T_{n}\right\|_{\Gamma}}{\operatorname{Cap}(\Gamma)^{n}} \tag{2}
\end{equation*}
$$

We state several sufficient conditions on Γ which leads to a smaller upper bound for the above quantity. (Received August 11, 2021)

