1172-32-15 Wei Chen (weichensdu@126.com), Chongqing University, Chongqing, 400065, and Qi Han* (qhan@tamusa.edu), Texas A&M University-San Antonio, San Antonio, TX 78224. On entire solutions to eikonal-type equations.

The eikonal equation $\sum_{j=1}^{N} u_{x_j}^2 = 1$ in \mathbf{R}^N is a nonlinear first-order partial differential equation arising from problems of wave propagation. It is easy to verify that linear functions $c_0 + \sum_{j=1}^{N} c_j x_j$ with $\sum_{j=1}^{N} c_j^2 = 1$ are solutions to the eikonal equation in \mathbf{R}^N , and Caffarelli and Crandall found that affine functions are indeed the only global solutions when $N \ge 2$ using some idea from an earlier work of Khavinson.

In this talk, we will discuss several equivalence conditions on entire solutions to eikonal-type nonlinear partial differential equations $u_{z_1}^2 + u_{z_2}^2 = p(z_1, z_2)e^{g(z_1, z_2)}$ in \mathbb{C}^2 for polynomials $g(z_1, z_2), p(z_1, z_2)$; all our results turn out to be sharp and are supplemented by examples for accuracy. (Received July 26, 2021)