1172-16-307 Soumyadip Acharyya* (acharyya@mailbox.sc.edu), Sudip Kumar Acharyya, Atasi Debray and Rakesh Bharati. An Isomorphism problem involving rings and subrings of measurable functions.

Let (X, \mathcal{A}) stand for a nonempty set X equipped with a σ -algebra \mathcal{A} over X. Let $\mathcal{M}(X, \mathcal{A})$ be the set of all real-valued \mathcal{A} -measurable functions on X, which forms a commutative lattice ordered ring with unity if the relevant operations are defined pointwise. $\mathcal{M}_c(X, \mathcal{A})$ stands for the subring of $\mathcal{M}(X, \mathcal{A})$ consisting of those functions that have countable range in \mathbb{R} . This talk will focus on separated realcompact measurable spaces and how an isomorphism problem involving $\mathcal{M}(X, \mathcal{A})$ is related to a similar isomorphism problem involving $\mathcal{M}_c(X, \mathcal{A})$ within that class of measurable spaces. This involves the discussion of a measure-theoretic analogue of the celebrated Hewitt's isomorphism theorem in rings of continuous functions. (Received August 31, 2021)