Diamonds and V-Stacks. Preliminary report.
Motivated by Scholze's 'etale cohomology of diamonds and Scholze and Fargues' geometrization of the local Langlands correspondence, we conjecture a universal construction of spatial diamonds. We then extend this universal construction to an ($\infty, 1$)-Grothendieck construction on our ($\infty, 1$)-category of spatial diamonds. A diamond \mathcal{D} is a certain pro-'etale sheaf on the category of perfectoid spaces of characteristic p. A perfectoid space is an adic space covered by adic spaces of the form $\operatorname{Spa}\left(R, R^{+}\right)$for R a perfectoid ring. A spatial diamond is a small v-sheaf in the v-topology, which is a Grothendieck topology. Constructing quotients of diamonds by a diamond equivalence relation yields v-sheaves and constructing quotients of small v-sheaves by a small v-sheaf equivalence relation produces v-stacks. We conclude by discussing a universal construction of v-stacks. (Received July 10, 2021)

