1172-13-63 Ricardo Burity, Aron Simis and Stefan O Tohaneanu* (tohaneanu@uidaho.edu). On the Jacobian ideal of an almost generic hyperplane arrangement.

Let \mathcal{A} denote a rank *n* central hyperplane arrangement in \mathbb{K}^n , where $\operatorname{char}(\mathbb{K}) = 0$. Suppose $\ell_1, \ldots, \ell_m \in R := \mathbb{K}[x_1, \ldots, x_n], m \ge n$ are the defining linear forms, and let $f = \ell_1 \cdots \ell_m$ denote the defining polynomial of \mathcal{A} .

We investigate the relationship between two ideals associated to \mathcal{A} : the Jacobian ideal J_f (which is the ideal generated by the first partial derivatives of f), and the ideal I generated by all (m-1)-fold products of the distinct defining linear forms (i.e., these generators are $f/\ell_1, \ldots, f/\ell_m$).

In the main result we prove that if \mathcal{A} is almost generic (i.e., any n-1 of the *m* defining linear forms are linearly independent), then J_f is a minimal reduction of \mathbb{I} . If n = 3, then any hyperplane arrangement is almost generic since any two distinct defining linear forms are linearly independent; this determine us to conjecture that the result is true regardless of the almost generic condition.

When \mathcal{A} is generic, we show that $(J_f)^{\text{sat}} = \mathbb{I}$. This provides a simpler proof of a conjecture due to Yuzvinsky (and proven first by Rose and Terao) that depth(R/J_f) = 0. (Received August 16, 2021)