1172-11-16

Qi Han (qhan@tamusa.edu), Texas A&M University-San Antonio, San Antonio, TX 78224, and Jingbo Liu* (jliu@tamusa.edu), Texas A&M University-San Antonio, San Antonio, TX 78224. Algebraic differential independence regarding the Riemann ζ -function and the Euler Γ -function.

It is a profound result of Hölder in 1887 saying that the Euler gamma-function Γ cannot satisfy any nontrivial algebraic differential equation having polynomial coefficients in **C**. David Hilbert, in his lecture addressed to the International Congress of Mathematicians at Paris in 1900 for his famous 23 problems, stated in Problem 18 that the Riemann zetafunction ζ cannot satisfy any nontrivial algebraic differential equation having polynomial coefficients in **C**, either; this problem was generalized around the 1930's by Mordukhai-Boltovskoi and Ostrowski independently, and further extended by Voronin.

In 2007, Lawrence Markus conjectured that Γ and ζ are mutually algebraically differential independent. In this talk, we study this question and show a positive partial answer to it; that is, we prove ζ can not be a solution to any nontrivial algebraic differential equation whose coefficients are polynomials in Γ , $\Gamma^{(n)}$ and $\Gamma^{(\ell n)}$ over the ring of polynomials in \mathbf{C} , where $\ell, n \geq 1$ are positive integers. (Received July 26, 2021)