A balanced bipartition of a graph G is a bipartition $\left(V_{1}, V_{2}\right)$ of $V(G)$ where V_{1} and V_{2} differ in size by at most 1. A minimum balanced bipartition of G is a balanced bipartition $\left(V_{1}, V_{2}\right)$ of $V(G)$ with the minimum number $e\left(V_{1}, V_{2}\right)$ of edges with ends in both V_{1} and V_{2}. We show that, for every plane triangulation G, there exists a minimum balanced bipartition $\left(V_{1}, V_{2}\right)$ of $V(G)$ with $e\left(V_{1}, V_{2}\right) \leq|V(G)|$ such that both V_{1} and V_{2} induce connected near-triangulations, and the total number of blocks in $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ exceeds the total number of internal vertices by at most 2 . This confirms the folklore conjecture that, for any planar graph G, a minimum balanced bipartition $\left(V_{1}, V_{2}\right)$ of $V(G)$ has $e\left(V_{1}, V_{2}\right) \leq|V(G)|$. (Received August 16, 2021)

