József Balogh and Felix Christian Clemen* (fclemen2@illinois.edu), Urbana, IL 61801-2562, and Bernard Lidický. Maximum Number of Almost Similar Triangles in the Plane. A triangle T^{\prime} is ε-similar to another triangle T if their angles pairwise differ by at most ε. Given a triangle $T, \varepsilon>0$ and $n \in \mathbb{N}$, Bárány and Füredi asked to determine the maximum number of triangles $h(n, T, \varepsilon)$ being ε-similar to T in a planar point set of size n. We show that for almost all triangles T there exists $\varepsilon=\varepsilon(T)>0$ such that $h(n, T, \varepsilon)=n^{3} / 24(1+o(1))$. Exploring connections to hypergraph Turán problems, we use flag algebras and stability techniques for the proof. (Received August 15, 2021)

