1151-60-200Erin Brown-Crossen, Sevak Mkrtchyan* (sevak.mkrtchyan@rochester.edu) and Jonathan
Pakianathan. Asymptotic completeness of random iid gap sequences.

Various notions of completeness for increasing sequences of positive integers have been studied. For example, Lagrange showed that the sequence of integer squares $1, 4, 9, \ldots, n^2, \ldots$ is weakly \leq 4-complete, while the Goldbach conjecture claims that the sequence of prime numbers is asymptotically weakly \leq 3-complete. In this work we study asymptotic completeness of random weakly increasing sequences of integers which have iid gaps. We show that in general, with probability one, such a sequence is asymptotically complete. We further show that given some conditions on the gap distribution, with probability one, a random iid gap sequence of weights is an asymptotically k-complete sequence for every fixed $k \geq 2$. (Received August 18, 2019)