1151-57-290 Christopher R. Cornwell* (ccornwell@towson.edu) and Nathan McNew. Unknotted cycles. Preliminary report.
From a permutation without fixed points (a derangement) there is a natural way to generate a grid diagram of a link. A knot is obtained when the cycle type is that of a single cycle. Call a derangement an unknotted cycle if the corresponding grid diagram is of the unknot. Such diagrams are sometimes considered in combinatorics - for example, in the study of pattern avoiding permutations.

The (large) Schröder numbers form a sequence of numbers appearing in several counting contexts. They count the number of separable permutations, permutations that avoid the patterns 2413 and 3142 . We show that the $n^{\text {th }}$ Schröder number equals the number of unknotted cycles on $n+1$ elements. The proof involves both combinatorial techniques and Bennequin's inequality. (Received August 20, 2019)

