Joehyun Kim* (joehyunkim5@gmail.com), Kelvin Kim and Jeewoo Lee. The Largest Angle Bisection Procedure.
For a given triangle $\triangle A B C$, with $\angle A \geq \angle B \geq \angle C$, the largest angle bisection procedure consists in constructing $A D$, the angle bisector of angle $\angle A$, and replacing $\triangle A B C$ by the two newly formed triangles, $\triangle A B D$ and $\triangle A C D$. Let Δ_{01} be a given triangle. Bisect Δ_{01} into two triangles, Δ_{11} and Δ_{12}. Next, bisect each $\Delta_{1 i}, i=1,2$, forming four new triangles $\Delta_{2 i}, i=1,2,3,4$. Continue in this fashion. For every nonnegative integer $n, T_{n}=\left\{\Delta_{n i}: 1 \leq i \leq 2^{n}\right\}$, so T_{n} is the set of 2^{n} triangles created after the n-th iteration. Define m_{n}, the mesh of T_{n}, as the length of the longest side among the sides of all triangles in T_{n}. Also, let γ_{n} be the smallest angle among the angles of the triangles in T_{n}. We prove the following results:

- $\gamma_{n}=\min (\angle C, \angle A / 2)$, for all $n \geq 1$.
- $m_{n} \rightarrow 0$ as $n \rightarrow \infty$.
- Unless Δ_{01} is an isosceles right triangle, the set $\bigcup_{n=0}^{\infty} T_{n}$
contains infinitely many triangles no two of which are similar.
(Received October 30, 2018)

