1151-52-4 Joehyun Kim* (joehyunkim5@gmail.com), Kelvin Kim and Jeewoo Lee. The Largest Angle Bisection Procedure.

For a given triangle ΔABC , with $\angle A \ge \angle B \ge \angle C$, the largest angle bisection procedure consists in constructing AD, the angle bisector of angle $\angle A$, and replacing ΔABC by the two newly formed triangles, ΔABD and ΔACD . Let Δ_{01} be a given triangle. Bisect Δ_{01} into two triangles, Δ_{11} and Δ_{12} . Next, bisect each Δ_{1i} , i = 1, 2, forming four new triangles Δ_{2i} , i = 1, 2, 3, 4. Continue in this fashion. For every nonnegative integer $n, T_n = {\Delta_{ni} : 1 \le i \le 2^n}$, so T_n is the set of 2^n triangles created after the *n*-th iteration. Define m_n , the mesh of T_n , as the length of the longest side among the sides of all triangles in T_n . Also, let γ_n be the smallest angle among the angles of the triangles in T_n . We prove the following results:

- $\gamma_n = \min(\angle C, \angle A/2)$, for all $n \ge 1$.
- $m_n \to 0$ as $n \to \infty$.
- Unless Δ_{01} is an isosceles right triangle, the set $\bigcup_{n=0}^{\infty} T_n$

contains infinitely many triangles no two of which are similar.

(Received October 30, 2018)