and Matt Torrence. Rational Preperiodic points for $z^{d}+c$.
Given a number field K and a polynomial $f_{c}(z) \in K[z]$ of degree at least 2, one can construct a finite directed graph whose vertices are the K-rational preperiodic points for f_{c}, with an edge $a \rightarrow b$ if and only if $f(a)=b$. The Uniform Boundedness Conjecture of Morton and Silverman suggests for a given K, there are only finitely many isomorphism classes of directed graphs that arise from f_{c}. In this article, we give conjecturally complete classifications of $z^{4}+c$ and $z^{3}+c$, like that of Poonen for $z^{2}+c$ over \mathbb{Q}, and like Doyle for the cyclotomic quadratic fields $\mathbb{Q}(i)$ and $\mathbb{Q}(\omega)$. The main tools used are dynatomic modular curves and results about quadratic points on curves. (Received August 06, 2019)

