Rufei Ren*, 28 lilac dr, apt.2, Apt.2. Primitive prime divisors in the critical orbits of one-parameter families of rational polynomials.
For a rational polynomial f and rational numbers c, u, we put $f_{c}(x):=f(x)+c$, and consider the Zsigmondy set $\mathcal{Z}\left(f_{c}, u\right)$ associated to the sequence $\left\{f_{c}^{n}(u)-u\right\}_{n>1}$, where f_{c}^{n} is the n-st iteration of f_{c}. In this paper, we prove that if u is a rational critical point of f, then there exists an $\mathbf{M}_{f}>0$ such that $\mathbf{M}_{f} \geq \max _{c \in \mathbb{Q}}\left\{\mathcal{Z}\left(f_{c}, u\right)\right\}$. (Received August 16, 2019)

