Kaitlyn Phillipson (kphillip@stedwards.edu), Grigoris Paouris (grigoris@math.tamu.edu) and J. Maurice Rojas* (rojas@math.tamu. edu), TAMU 3368, College Station, TX 77843-3368. Faster Solution to Smale's 17th Problem for Binomial Systems.
Suppose $F:=\left(f_{1}, \ldots, f_{n}\right)$ is a system of n-variate polynomials with f_{i} having degree at most d and the coefficient of $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ in f_{i} being an independent complex Gaussian of mean 0 and variance $\frac{d!}{a_{1}!\cdots a_{n}!}$. Recent progress on Smale's 17 th Problem by Lairez (building on seminal work of Shub, Smale, Beltran, Pardo, Burgisser, and Cucker) has resulted in deterministic algorithms that find a single (complex) approximate root of such an F using just $(n+d)^{O(\min n, d)}$ arithmetic operations on average.

Suppose \mathcal{A} is the union of the exponent vectors in the monomial term expansions of f_{1}, \ldots, f_{n}. We give a deterministic algorithm that, when $\# \mathcal{A} \leq n+1$, finds a (complex) approximate root using just $(n+\log d)^{O(1)}$ arithmetic operations on average. This special case includes the case of binomial systems, whose numerical solution is a key step in polyhedral homotopy algorithms for solving arbitrary polynomial systems. Furthermore, our approach allows Gaussians with arbitrary variance. (Received January 25, 2019)

