1146-05-251 Patrick Bennett* (patrick.bennett@wmich.edu), Andrzej Dudek and Shira Zerbib. Large triangle packings and Tuza's conjecture in sparse random graphs.
The triangle packing number $\nu(G)$ of a graph G is the maximum size of a set of edge-disjoint triangles in G. Tuza conjectured that in any graph G there exists a set of at most $2 \nu(G)$ edges intersecting every triangle in G. We show that Tuza's conjecture holds in the random graph $G=G(n, m)$, when $m \leq 0.2403 n^{3 / 2}$ or $m \geq 2.1243 n^{3 / 2}$. This is done by analyzing a greedy algorithm for finding large triangle packings in random graphs. (Received January 24, 2019)

