1120-52-9 Alexander Koldobsky* (koldobskiya@missouri.edu), Department of Mathematics, University of Missouri, Columbia, MO 65211. The slicing problem for sections of proportional dimensions.

We consider the following problem. Does there exist an absolute constant C such that for every $n \in N$, every integer $1 \leq k < n$, every origin-symmetric convex body L in \mathbb{R}^n , and every measure μ with non-negative even continuous density in \mathbb{R}^n ,

$$\mu(L) \leq C^k \max_{H \in Gr_{n-k}} \mu(L \cap H) |L|^{k/n},$$

where Gr_{n-k} is the Grassmanian of (n-k)-dimensional subspaces of \mathbb{R}^n , and |L| stands for volume? This question is an extension to arbitrary measures (in place of volume) and to sections of arbitrary codimension k of the hyperplane conjecture of Bourgain, a major open problem in convex geometry.

We show that the inequality holds for arbitrary origin-symmetric convex bodies, all k and all μ with $C \sim \sqrt{n}$, and with an absolute constant C for some special classes of bodies. We also prove that for every $\lambda \in (0, 1)$ there exists a constant $C = C(\lambda)$ so that the inequality holds for every $n \in N$, every origin-symmetric convex body L in \mathbb{R}^n , every measure μ with continuous density and the codimension of sections $k \geq \lambda n$. (Received December 19, 2015)