We consider the following problem. Does there exist an absolute constant C such that for every $n \in N$, every integer $1 \leq k<n$, every origin-symmetric convex body L in R^{n}, and every measure μ with non-negative even continuous density in R^{n},

$$
\mu(L) \leq C^{k} \max _{H \in G r_{n-k}} \mu(L \cap H)|L|^{k / n}
$$

where $G r_{n-k}$ is the Grassmanian of $(n-k)$-dimensional subspaces of R^{n}, and $|L|$ stands for volume? This question is an extension to arbitrary measures (in place of volume) and to sections of arbitrary codimension k of the hyperplane conjecture of Bourgain, a major open problem in convex geometry.

We show that the inequality holds for arbitrary origin-symmetric convex bodies, all k and all μ with $C \sim \sqrt{n}$, and with an absolute constant C for some special classes of bodies. We also prove that for every $\lambda \in(0,1)$ there exists a constant $C=C(\lambda)$ so that the inequality holds for every $n \in N$, every origin-symmetric convex body L in R^{n}, every measure μ with continuous density and the codimension of sections $k \geq \lambda n$. (Received December 19, 2015)

