1120-47-83 **Justin R. Peters*** (peters@iastate.edu), Department of Mathematics, Iowa State University, Ames, IA 50011, and **Preechaya Sanyatit**. A class of commutative operator algebras. Preliminary report.

Let α be a positive irrational number, and let \mathcal{A}_{α} be the set of continuous functions on the 2-torus \mathbb{T}^2 satisfying $\hat{f}(m,n) = 0$ whenever $m + \alpha n < 0$. These algebras and other subalgebras of continuous functions on compact groups were studied by Wermer, Gleason, Gamelin and others in the 1950's and 60's. These algebras \mathcal{A}_{α} are Dirichlet algebras, they are maximal subalgebras of $C(\mathbb{T}^2)$, and have various properties related to analyticity. None of the properties they studied, however, distinguished between \mathcal{A}_{α} and \mathcal{A}_{β} if α and β are two positive irrationals. From the operator algebra viewpoint it is natural to ask: Are these algebras in fact indistinguishable?

We can also describe the automorphism group of the \mathcal{A}_{α} . (Received February 13, 2016)