1120-41-70 **Laura De Carli***, Dept. mathematics, Univ. Park, Miami, FL 33199. *Exponential bases on rectangles in R^d*. Preliminary report.

Let Q be the union of N unit cubes in \mathbb{R}^d with vertices in \mathbb{Z}^d . We show necessary and sufficient conditions that ensure that a set of exponential $\mathcal{B} = \{e^{2\pi i(\vec{n}+\vec{d}_j)x}\}_{n\in\mathbb{Z}^d,1\leq j\leq N}$ is an exponential basis on Q. In the process, we also show that \mathcal{B} is a Riesz basis if and only if it is a frame and if and only if it is a Riesz sequence. We also prove a new stability theorem for \mathcal{B} . The proof of our main result relies on the semigroup properties and precise norm estimates of a remarkable family of linear operators on $\ell^2(\mathbb{Z}^d)$. (Received February 10, 2016)