1120-37-104 Semyon Litvinov* (sbn2@psu.edu), 76 University Drive, Hazleton, PA 18202, and Vladimir Chilin (vladimirchil@gmail.com), Vuzgorodok, Tashkent, 700095, Uzbekistan. Individual Ergodic Theorem in Non-commutative Orlicz Spaces.

Let (Ω, μ) be a sigma-finite measure space. A classical Orlicz space $L^{\Phi} = L^{\Phi}(\Omega, \mu)$ associated with an Orlicz function Φ is a natural generalization of an L^p -space, $1 \leq p < \infty$, for which $\Phi(u) = u^p$, $u \geq 0$. It is known that for a wide class of Orlicz functions Φ and a Dunford-Schwartz operator $T : L^1 + L^{\infty} \to L^1 + L^{\infty}$, the inclusion $T(L^{\Phi}) \subset L^{\Phi}$ holds, and Dunford-Schwartz individual ergodic theorem follows from its validity for the space $L^1(\Omega, \mu)$. We consider a non-commutative Orlicz space $L^{\Phi}(\mathcal{M}, \tau)$ associated with a semi-finite von Neumann algebra \mathcal{M} , a faithful normal semi-finite trace τ on \mathcal{M} and an Orlicz function Φ satisfying (δ_2, Δ_2) -condition and establish a non-commutative version of Dunford-Schwartz individual ergodic theorem for $L^{\Phi}(\mathcal{M}, \tau)$. (Received February 16, 2016)