1120-15-149 Adam H Berliner* (berliner@stolaf.edu), Dale Olesky and Pauline van den Driessche. Refined inertias for zero-nonzero patterns. Preliminary report.

Let A be any real matrix realization of a given sign pattern S. The refined inertia of S is the collection of 4-tuples $\{ri(A) = (n_+, n_-, n_z, 2n_p)\}$, where n_+ and n_- give the number of eigenvalues with positive real part and negative real part (respectively) and n_z and $2n_p$ give the number of zero and purely imaginary eigenvalues (respectively). Recent research has focused on $n \times n$ patterns whose refined inertia contains $\mathbb{H}_n = \{(0, n, 0, 0), (0, n - 2, 0, 2), (2, n - 2, 0, 0)\}$. In this talk, we extend these notions to zero-nonzero patterns and discuss some results for patterns whose refined inertia contains $\mathbb{H}_n^* = \{(0, n, 0, 0), (0, n - 2, 0, 2), (2, n - 2, 0, 0), (n, 0, 0, 0), (n - 2, 0, 2), (n - 2, 2, 0, 0)\}$. (Received February 19, 2016)