1120-13-124 **Joseph Gubeladze*** (soso@sfsu.edu), Department of Mathematics, San Francisco State University, San Francisco, CA 94132. Conductor ideals of affine monoids and K-theory.

A positive affine monoid is a finitely generated additive submonoid of \mathbb{Z}^r for some r, containing no nontrivial subgroup. In analogy with commutative rings, the conductor ideal of a positive affine monoid M is the set $\mathbf{c}_{\overline{M}/M} = \{m \in \mathbb{Z}^r : m + \overline{M} \subset M\}$, where \overline{M} is the normalization of M in \mathbb{Z}^r . It is a non-zero ideal of M. When M is a numerical monoid, the ideal $\mathbf{c}_{\overline{M}/M}$ is equivalent to the Frobenius number of M. Several people studied conductor ideals of affine monoids in arbitrary dimensions. After a brief survey of such structural results, we will discuss how conductor ideals $\mathbf{c}_{\overline{M}/M}$ appear in the K-theory of monoid rings R[M]. The picture is compete for the Grothendieck group K_0 and mostly conjectural for higher groups. (Received February 18, 2016)