1120-05-58 Laura Escobar* (lescobar@illinois.edu), Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, IL 61801, and Karola Mészáros. Toric matrix Schubert varieties.
Start with a permutation matrix π and consider all matrices that can be obtained from π by taking downward row operations and rightward column operations; the closure of this set gives the matrix Schubert variety X_{π}. Such a variety can be written as $X_{\pi}=Y_{\pi} \times \mathbb{C}^{q}$ (where q is maximal). We characterize when Y_{π} is toric (with respect to a $2 n-1$ dimensional torus) and study the associated polytope of its projectivization. We construct regular triangulations of these polytopes which we show are geometric realizations of a family of subword complexes. Based on joint work with Karola Mészáros. (Received February 08, 2016)

