1120-05-24 Kirsten Hogenson* (kahogens@iastate.edu) and Ryan R Martin (rymartin@iastate.edu). A random version of the r-fork-free theorem.
Let $\mathcal{P}(n)$ denote the set of all subsets of $[\mathrm{n}]$ and let $\mathcal{P}(n, p)$ be the set obtained from $\mathcal{P}(n)$ by selecting elements independently at random with probability p . The r-fork poset is the family of distinct sets F, G_{1}, \ldots, G_{r} such that $F \subset G_{i}$ for all i. De Bonis and Katona showed that, for fixed r, any (r+1)-fork-free family in $\mathcal{P}(n)$ has size at most $(1+o(1))\binom{n}{\lfloor n / 2\rfloor}$. In this talk, I will discuss a similar result for ($\mathrm{r}+1$)-fork-free families in $\mathcal{P}(n, p)$. In particular, if $p n \rightarrow \infty$, then with high probability, the largest ($\mathrm{r}+1$)-fork-free set in $\mathcal{P}(n, p)$ has size at most $(1+o(1)) p\binom{n}{\lfloor n / 2\rfloor}$. This result is influenced by the work of Balogh, Mycroft and Treglown, who proved a random version of Sperner's theorem using the hypergraph container method. (Received January 20, 2016)

