The universe appears to be very complicated when looked at in very tiny detail. But it appears there may be a simple key to unlock the quantum world. It could be a summation of powers-of-three: $\mathrm{W}_{a}:=\sum_{j=0}^{a} 3^{6 j}$. The four relations involving this depend upon only even integers (e), and odd integers (o).

The four combinations needed are:

$$
\begin{array}{ll}
\mathrm{X}_{\mathrm{o}}:=\left(3^{3} \mathrm{~W}_{\frac{(0-1)}{2}-1}+\mathrm{W}_{\frac{(0-1)}{2}}+3^{3(\mathrm{o})}\right. \\
\mathrm{Y}_{\mathrm{o}}:=\left(3^{3} \mathrm{~W}_{\frac{(\mathrm{o}-1)}{2}-1}-\mathrm{W}_{\frac{(0-1)}{2}}+3^{3(\mathrm{o})}\right) & \mathrm{Z}_{\mathrm{e}}:=\left(3^{3} \mathrm{~W}_{\frac{(\mathrm{e})}{2}-1}+\mathrm{W}_{\frac{(\mathrm{e})}{2}}\right) \\
\mathrm{T}_{\mathrm{e}}:=\left(3^{3} \mathrm{~W}_{\frac{(\mathrm{e})}{2}-1}-\mathrm{W}_{\frac{(\mathrm{e})}{2}}\right.
\end{array}
$$

These, when simplified, are:

$$
\left(\mathrm{X}_{\mathrm{o}}, \mathrm{Y}_{\mathrm{o}}, \mathrm{Z}_{\mathrm{e}}, \mathrm{~T}_{\mathrm{e}}\right)=\left(\frac{+3^{3(\mathrm{o}+1)}-1}{26}, \frac{+3^{3(\mathrm{o}+1)}-1}{28}, \frac{+3^{3(\mathrm{e}+1)}-1}{26}, \frac{-3^{3(\mathrm{e}+1)}-1}{28}\right)
$$

The signs of the $\pm 3^{(\cdot+1)}$ shows the $(+++-)$ nature of the signs. These $\left(\mathrm{X}_{\mathrm{o}}, \mathrm{Y}_{\mathrm{o}}, \mathrm{Z}_{\mathrm{e}}, \mathrm{T}_{\mathrm{e}}\right)$ are four functions, called here the Space-Time-Matter (STM) functions, analogs of ($x, y, z,-t$). For specific integers of (e) and (o), the functions evaluate to simply four integers. This is so, even though they may appear to be rational numbers.

How were the initial W forms of $\left(\mathrm{X}_{\mathrm{o}}, \mathrm{Y}_{\mathrm{o}}, \mathrm{Z}_{\mathrm{e}}, \mathrm{T}_{\mathrm{e}}\right)$ found? That is the subject of this paper. See http://dombroskiSTM.org. (Received May 14, 2009)

