1054-46-108 Paul S. Muhly* (pmuhly@math.uiowa.edu), Department of Mathematics, University of Iowa, Iowa City, IA 52242, and Baruch Solel (mabaruch@techunix.technion.ac.il), Department of Mathematics, Technion, 32000 Haifa, Israel. *Morita Transforms of Operator Tensor Algebras.* Preliminary report.

Suppose that E_i is a C^* -correspondence over the C^* -algebra A_i , i = 1, 2. A (strong) Morita equivalence between (A_1, E_1) and (A_2, E_2) is an invertible C^* -correspondence X from A_1 to A_2 such that $E_1 \otimes_{A_1} X \simeq X \otimes_{A_2} E_2$. In Proc. London Math. Soc. 81 (2000), 113–168, we showed that a Morita equivalence between (A_1, E_1) and (A_2, E_2) induces a strong Morita equivalence between the corresponding tensor algebras $\mathcal{T}_+(E_1)$ and $\mathcal{T}_+(E_2)$ in the sense of Blecher, Muhly and Paulsen in the Memoirs of the AMS 143 (2000), no. 681. In this talk we will make precise the sense in which a strong Morita equivalence between (A_1, E_1) and (A_2, E_2) induces an isometry between the space of completely contractive representations of $\mathcal{T}_+(E_1)$ and the completely contractive representations of $\mathcal{T}_+(E_2)$ and discuss other features of the representation theory of tensor algebras that are preserved under this notion of Morita equivalence. (Received September 09, 2009)