Edward S. Letzter*, letzter@temple.edu. Q-Commutative Power Series Rings at Roots of Unity. Preliminary report.
Given a field k and multiplicatively antisymmetric parameters $q_{i j} \in k^{\times}$, we can construct the noncommutative formal power series ring $R:=k_{q}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$, where $x_{i} x_{j}=q_{i j} x_{j} x_{i}$. It then follows from well-known theory that R is a local, regular, noetherian, zariskian domain having Krull and global dimension equal to n. In recent joint work with Linhong Wang, we studied the two-sided ideal theory of R, obtaining our most precise results in the case when the $q_{i j}$, for $i<j$, are algebraically independent. In the present talk I will discuss the "extreme opposite scenario" - the case when the $q_{i j}$ are all roots of unity. The focus will be on two-sided ideal theory and, in particular, catenarity of the prime spectrum. (Received September 11, 2009)

