Kent G Slinker* (kslinker@pima.edu), 1033A North 3rd Ave, Tucson, AZ 85705. An Infinitude of Primes of the Form $b$ squared plus one.
If $b^{2}+1$ is prime then $b$ must be even, hence we examine the form $4 u^{2}+1$. Rather than study primes of this form we study composites where the main theorem of this paper establishes that if $4 u^{2}+1$ is composite, then $u$ belongs to a set whose elements are those $u$ such that $u^{2}+t^{2}=n(n+1)$, where $t$ has a upper bound determined by the value of $u$. This connects the composites of the form $4 u^{2}+1$ with numbers expressible as the sum of two squares equal to the product of two consecutive integers. A result obtained by Gauss concerning the average number of representations of a number as the sum of two squares is then used to show that an infinite sequence of $u$ for which $u^{2}+t^{2}=n(n+1)$ is impossible. This entails the impossibility of an infinite sequence of composites, and hence an infinitude of primes of the form $b^{2}+1$.
(Received August 31, 2009)

