Thai Hoang Le* (leth@math.ucla.edu), UCLA MAthematics Department, Box 951555, Los Angeles, CA 90095-1555. Intersective polynomials and the primes.
Intersective polynomials are polynomials in $\mathbf{Z}[x]$ having roots every modulo. For example, $P_{1}(n)=n^{2}$ and $P_{2}(n)=n^{2}-1$ are intersective polynomials, while $P_{3}(n)=n^{2}+1$ is not. We show, using results of Green-Tao and Lucier, that for any intersective polynomial h, inside any subset of positive relative density of the primes, we can find distinct primes p_{1}, p_{2} such that $p_{1}-p_{2}=h(n)$ for some integer n. Such a conclusion also holds in the Chen primes (where by a Chen prime we mean a prime number p such that $p+2$ is the product of at most 2 primes). (Received September 15, 2009)

