1054-05-55 Steven Butler* (butler@math.ucla.edu), UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, and Kevin Costello (kcostell@math.gatech.edu) and Ronald
Graham (graham@ucsd.edu). Finding patterns avoiding many monochromatic constellations. Given fixed $0=q_{0}<q_{1}<q_{2}<\cdots<q_{k}=1$ a constellation in $[n]$ is a scaled translated realization of the q_{i} with all elements in $[n]$, i.e.,

$$
p, p+q_{1} d, p+q_{2} d, \ldots, p+q_{k-1} d, p+d .
$$

We consider the problem of minimizing the number of monochromatic constellations in a two coloring of $[n]$. We show how given a coloring based on a block pattern how to find the number of monochromatic solutions to a lower order term, and also how experimentally we might find an optimal block pattern. We also show for the case $k=2$ that there is always a block pattern that beats random coloring. (Received August 31, 2009)

