the kth power sum of the nature numbers as a polynomial in the first power sum.
Set $S=S(1)$, where $S(k)$ is the sum of the kth powers of $1,2,3, \ldots, n$. It is well-known that $S(3)$ is the square of S, namely $\operatorname{CS}(3)=(1,0,0)$, where $\operatorname{CS}(2 \mathrm{k}-1)$ is the coefficient $(\mathrm{k}+1)$-tuple of the polynomial in S for $\mathrm{S}(2 \mathrm{k}-1)$. From $\mathrm{CS}(5)=(4 / 3,-$ $1 / 3,0,0), \operatorname{CS}(7)=(2,-4 / 3,1 / 3,0,0), \operatorname{CS}(9)=(16 / 5,-4,12 / 5,-3 / 5,0,0), \mathrm{CS}(11)=(16 / 3,-32 / 3,34 / 3,-20 / 3,5 / 3,0,0), \ldots$, we form a triangular array TO. We also have $\mathrm{S}(4) / \mathrm{S}(2)=(6 / 5) \mathrm{S}-1 / 5$. Let $\mathrm{C}(\mathrm{S}(2 \mathrm{k}) / \mathrm{S}(2)$) denote the coefficient ($\mathrm{k}-1$)-tuple of the polynomial in S for $S(2 k) / S(2)$. From $C(S(6) / S(2))=(12 / 7,-6 / 7,1 / 7), C(S(8) / S(2))=(8 / 3,-8 / 3,6 / 5,-1 / 5), C(S(10) / S(2))=(48 / 11,-$ $80 / 11,68 / 11,-30 / 11,5 / 11), \ldots$, we form another triangular array TE. Among other things, we found a keen relationship between TO and TE. (Received June 22, 2009)

