1057-60-242

michael m.g. goldstein* (gold@math.toronto.edu), Dept. of Mathematics, University of Toronto, Toronto, Ontario M5S 1A1, Canada. Estimate for the exterior power of the resolvent of Andeson model in a quasi-one-dimensional domain.

We consider the Schrödinger operator of the Anderson model

$$[H_{\Lambda}\psi](n) := \Delta_{\Lambda}\psi(n) + v_n\psi_n , v = (v_n)$$

in a quasi-one-dimensional domain $\Lambda = [1, N] \times [1, K] \subset \mathbb{Z}^2$, $K \leq N^{\delta}$, $\delta \ll 1$, with Dirichlet boundary condition on $\partial \Lambda$. We assume that x_n are i.i.d and the common distribution $dP_0(v_0)$ has a bounded density. We consider the exterior K-th power $\bigwedge^K (H_{\Lambda}(v) - E)^{-1}$ of the resolvent $(H_{\Lambda}(v) - E)^{-1}$. Let $\alpha_l = (x_{1,l}, \ldots, x_{K,l})$, $\alpha_r = (x_{1,r}, \ldots, x_{K,r})$, where $x_{1,l} = (1, 1), \ldots, x_{K,l} = (1, K), x_{1,r} = (N, 1), \ldots, x_{K,r} = (N, K)$. Then there exists $\gamma_0 > 0$ such that with probability $\geq 1 - \exp(-N^{1/2})$ holds

$$\left|\bigwedge^{R} (H_{\Lambda}(v) - E)^{-1}(\alpha_{l}, \alpha_{r})\right| < \exp(-\gamma_{0}N)$$
(1)

(Received January 24, 2010)