1057-47-301 Roger A. Nichols* (rnich_35180@yahoo.com), 1300 University Boulevard, Campbell Hall, Suite 452, Birmingham, AL 35294. Spectral Properties of Discrete Displacement Models.

We consider a discrete displacement model h_{ω} on $\ell^2(\mathbb{Z}^d)$ indexed by a displacement configuration $\omega = \{\omega_k\}_{k \in \mathbb{Z}^d}$ and determine a configuration ω^* with the property that h_{ω^*} has the lowest possible ground and highest possible ceiling state energies. For the random displacement model, i.e. for ω_k i.i.d. random vectors, the configuration ω^* allows to calculate the minimum and maximum of the almost-sure spectrum. Using this result and positivity properties of generalized eigenfunctions, we show the almost-sure spectrum Σ_{λ} of the one-dimensional Bernoulli displacement model $h_{\omega}(\lambda)$, where $\lambda \in \mathbb{R} \setminus \{0\}$ is a fixed coupling constant, contains a gap for every $\lambda \neq 0$. We explicitly calculate Σ_{λ} for $0 < |\lambda| \leq 2$. Consequences for the integrated density of states are also discussed. (Received January 25, 2010)