Consider a connected finite graph $E$ with set of vertices $\mathfrak{X}$. Choose a nonempty subset $Y \subset \mathfrak{X}$, not equal to the whole $\mathfrak{X}$, and call it the boundary $Y=\partial \mathfrak{X}$. We are given a real valued function $F: Y \rightarrow \mathbb{R}$. Our objective is to find function $u$ on $\mathfrak{X}$, such that $u=F$ on $Y$ and $u$ satisfies the following equation for all $x \in \mathfrak{X} \backslash Y$

$$
u(x)=\alpha \max _{y \in S(x)} u(y)+\beta \min _{y \in S(x)} u(y)+\gamma\left(\frac{\sum_{y \in S(x)} u(y)}{\#(S(x))}\right)
$$

where $\alpha, \beta$, and $\gamma$ are some predetermined non-negative constants such that $\alpha+\beta+\gamma=1$, for $x \in \mathfrak{X}, S(x)$ is the set of vertices connected to $x$ by an edge, and $\#(S(x))$ denotes the cardinality of $S(x)$. We prove uniqueness and existence of the solution of the above Dirichlet problem and study qualitative studies of the properties of the solutions. (Received December 28, 2009)

