1057-35-39 **David R Adams*** (dave@ms.uky.edu), Mathematics Department, 715 Patterson Office Tower, University of Kentucky, Lexington, KY 40506. A Frostman type characterization of Hausdorff-Netrusov Measures.

Using the medium of Besov capacity, the capacities associated with the Besov spaces $B^{p,1}_{\alpha}$ and $B^{1,q}_{\alpha}$, $1 \le p < \infty$, $1 \le q < \infty$, we give a Frostman type characterization of Hausdorff-Netrusov measure:

$$\lim_{\epsilon \to 0} \inf \left[\sum_{i=1}^{\infty} \left(\sum_{j \in I_i} r_j^d \right)^{\theta} \right]^{1/\theta} \equiv H^{d,\theta}(E),$$

E compact subset of \mathbb{R}^N , $I_i = \{j : 2^{-i-1} \le r_j < 2^{-i}\}$, $r_j \le \epsilon$, $0 < \theta < \infty$, $0 < d \le N$; the infimum is over all countable covers of *E* by balls of radius r_j , j = 1, 2, ... Frostman's result is: Classical Hausdorff *d*-measure $H^{d,1}(E) > 0$ iff there exists a measure μ supported on *E* such that $\mu(B(x,t)) \le At^d$, $0 < t \le 1$, and all $x \in E$. B(x,t) is a Euclidean ball centered at *x* of radius t > 0; *A* is some constant independent of *x* and *t*. (Received December 10, 2009)