1057-35-123

W. Y. Chan* (wchan@semo.edu), Department of Mathematics, Southeast Missouri State University, Cape Girardeau, MO 63701. *Blow-up and Quenching for Coupled Semilinear Parabolic* Systems.

Let γ , μ , and q be positive real numbers, p be a positive real number greater than or equal to 1, $T \leq \infty$, D be a bounded n-dimensional domain, ∂D and \overline{D} be the boundary and closure of D respectively, Ω be $D \times (0, T)$, and Δ be the Laplace operator. In this talk, we study the blow-up and quenching of the following coupled semilinear parabolic systems:

$$u_t - \Delta u = \gamma v^p$$
 in Ω ,

$$v_t - \Delta v = \mu \frac{1}{(1-u)^q} \text{ in } \Omega,$$

$$u(x,0) = u_0(x)$$
 on \overline{D} and $v(x,0) = v_0(x)$ on \overline{D} , $u(x,t) = 0 = v(x,t)$ on $\partial D \times (0,T)$,

where $u_0(x)$ and $v_0(x)$ belong to $C^{2+\alpha}(\bar{D})$ for some $\alpha \in (0,1)$, and they are nonnegative functions on \bar{D} such that $u_0(x) < 1$ on \bar{D} and $u_0(x) = 0 = v_0(x)$ on ∂D . (Received January 16, 2010)