1057-35-116 **Björn Bennewitz**, **Kaj Nyström**, **John Lewis** and **Andrew L Vogel*** (alvogel@syr.edu), 215 Carnegie, Syracuse University, Syracuse, NY 13244. *Dimension of p-harmonic measure in space*. Preliminary report.

Let $\Omega \subset \mathbb{R}^n$, $n \geq 3$, and let $p, 1 , <math>p \neq 2$, be given. In this paper we study the dimension of p-harmonic measures that arise from non-negative solutions to the p-Laplace equation, vanishing on a portion of $\partial\Omega$, in the setting of δ -Reifenberg flat domains. In particular, we prove, for $p \geq n$, that there exists $\tilde{\delta} = \tilde{\delta}(p, n) > 0$ small such that if Ω is a δ -Reifenberg flat domain with $\delta < \tilde{\delta}$, then p-harmonic measure is concentrated on a set of σ -finite H^{n-1} -measure. The situation is more interesting when 1 as we show by examples involving certain Wolff snowflakes. Our $results complement work of the first three authors in <math>\mathbb{R}^2$ (along with Pietro Poggi-Corradini) where similar results for the dimension p-harmonic measure were obtained in a Jordan domain bounded by a quasicircle and in simply connected domains. (Received January 15, 2010)