Kwang C. Shin* (kshin@westga.edu), Department of Mathematics, University of West Georgia, Carrollton, GA 30118. All cubic and quartic polynomials P for which $f^{\prime \prime}+P(z) f=0$ has a solution with infinitely many real zeros and at most finitely many non-real zeros. Preliminary report.
In 1883 Steven Bank posed the question of classifying polynomials P for which $f^{\prime \prime}+P(z) f=0$ has a solution that has only real zeros and infinitely many of them (Problem 2.71 of Hayman's Collection). In this talk, we completely characterize all cubic and quartic polynomials P for which the equation has a solution that has infinitely many real zeros and at most finitely many non-real zeros.

Titchmarsh, Gundersen, Shin, and Eremenko et. al. have found some classes of such polynomials P. (Received December 02, 2009)

