Let f be an analytic map near 0 with $f(0)=0$ and $f^{\prime}(0) \neq 0$. For r fixed (small) $f\left(r e^{i \theta}\right)$ describes an analytic Jordan curve $J(r)$, and hence defines an inner domain G_{1} and an outer domain G_{2}. Let $M_{1}(r)$ be the reduced modulus of $J(r)$ with respect to 0 in G_{1}, and let $M_{2}(r)$ the reduced modulus of $J(r)$ with respect to ∞ in G_{2}. Then $M_{1}(r)+M_{2}(r) \leq 0$ with equality if and only if $J(r)$ is a circle centered at 0 . Teichmü ller's famous Modulsatz states that if $M_{1}+M_{2}$ is close to 0 , then J is closed to being a circle (geometrically). So the quantity $M_{1}+M_{2}$ can be thought as a measure of how far J is from being a circle. In previous work we showed that $\left|M_{1}(r)+M_{2}(r)\right|$ is monotonically increasing with r. Inspired by the recent breakthrough of Iwaniec, Kovalev, and Onninen on the Nitsche conjecture, we have extended our result to conformal mappings defined on an annulus $\{1<|z|<R\}$ such that $|f(z)|=1$ for $|z|=1$. We will finish the talk with some open problems related to the work of Pólya and Szegő. (Received January 04, 2010)

