Aimo Hinkkanen* (aimo@illinois.edu), Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green St., Urbana, IL 61801, and Ilgiz Kayumov, Institute of Mathematics and Mechanics, Kazan State University, Kazan, 420 008, Russia. Smale's problem for polynomials with critical points on two rays.
Let f be a polynomial of degree $n \geq 2$ with $f(0)=0$ and $f^{\prime}(0)=1$. Smale conjectured that there is a critical point ζ of f, that is, a zero of f^{\prime}, such that $|f(\zeta) / \zeta| \leq 1-1 / n$. Addressing a special case of this problem, we prove that there is a critical point ζ of f with $|f(\zeta) / \zeta| \leq 1 / 2$ provided that the critical points of f lie in the sector $\left\{r e^{i \theta}: r>0,|\theta| \leq \pi / 6\right\}$, and $|f(\zeta) / \zeta| \leq 2 / 3$ if they lie in the union of two rays from the origin to infinity (for example, the real axis), or in the union of the two rays $\left\{1+r e^{ \pm i \theta}: r \geq 0\right\}$, where $0<\theta \leq \pi / 2$. We identify the cases of equality. The best previously known degree-independent upper bound for the case of real critical points was $e-2$, due to Sheil-Small and to Rahman and Schmeisser. (Received January 25, 2010)

