1057-30-27 Alexander J. Izzo* (aizzo@math.bgsu.edu), Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403. A Tetrachotomy for Certain Algebras Containing the Disc Algebra.

We will answer a question raised by Joseph Cima. Let D denote the open unit disc in the plane, and let A(D) denote the disc algebra. A theorem of E. M. Čirka asserts that if f is a function in $C(\overline{D})$ and f is harmonic but nonholomorphic on D, then the uniformly closed subalgebra A(D)[f] of $C(\overline{D})$ generated by A(D) and f is equal to $C(\overline{D})$. An analogous result for $H^{\infty}(D)$ was proved by Sheldon Axler and Allen Shields: If f is a bounded function on D that is harmonic but nonholomorphic, then the uniformly closed subalgebra $H^{\infty}(D)[f]$ of $L^{\infty}(D)$ generated by $H^{\infty}(D)$ and f contains $C(\overline{D})$.

Taken together these two theorems suggest that perhaps the inclusion $A(D)[f] \supset C(\overline{D})$ holds whenever f is a bounded harmonic nonholomorphic function on D. However, this is false; it is not even true that $A(D)[f,\overline{f}] \supset C(\overline{D})$ whenever $f \in H^{\infty}(D)$. This led Cima to ask which continuous functions are in A(D)[f] or $A(D)[f,\overline{f}]$ when the inclusion $A(D)[f] \supset C(\overline{D})$ or $A(D)[f,\overline{f}] \supset C(\overline{D})$ fails. We will answer this question for $A(D)[f,\overline{f}]$. (Received December 03, 2009)